Transitive behavior in reversible one-dimensional cellular automata with a Welch index 1

被引:1
|
作者
Mora, JCST [1 ]
机构
[1] CINVESTAV, IPN, Dept Ingn Elect, Secc Computac, Mexico City 07360, DF, Mexico
来源
关键词
cellular automata; dynamical systems; matrix methods;
D O I
10.1142/S0129183102003607
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The problem of knowing and characterizing the transitive behavior of a given cellular automaton is a very interesting topic. This paper provides a matrix representation of the global dynamics in reversible one-dimensional cellular automata with a Welch index 1, i.e., those where the ancestors differ just at one end. We prove that the transitive closure of this matrix shows diverse types of transitive behaviors in these systems. Part of the theorems in this paper are reductions of well-known results in symbolic dynamics. This matrix and its transitive closure were computationally implemented, and some examples are presented.
引用
收藏
页码:837 / 855
页数:19
相关论文
共 50 条
  • [41] Derivation and Representation of One-Dimensional, Reversible, Number-Conserving Cellular Automata Rules
    Schranko, Angelo
    de Oliveira, Pedro P. B.
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2011, 6 (01) : 77 - 89
  • [42] Local information in one-dimensional cellular automata
    Helvik, T
    Lindgren, K
    Nordahl, MG
    [J]. CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 121 - 130
  • [43] Mixing properties of one-dimensional cellular automata
    Kleveland, R
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1755 - 1766
  • [44] One-Dimensional Pattern Generation by Cellular Automata
    Kutrib, Martin
    Malcher, Andreas
    [J]. CELLULAR AUTOMATA, ACRI 2020, 2021, 12599 : 46 - 55
  • [45] Boundary Growth in One-Dimensional Cellular Automata
    Brummitt, Charles D.
    Rowland, Eric
    [J]. COMPLEX SYSTEMS, 2012, 21 (02): : 85 - 116
  • [46] LYAPUNOV EXPONENTS FOR ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHERESHEVSKY, MA
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 1 - 8
  • [47] Model Checking One-Dimensional Cellular Automata
    Sutner, Klaus
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (03) : 213 - 224
  • [48] ONE-DIMENSIONAL CELLULAR AUTOMATA AS ARITHMETIC RECURSIONS
    URIAS, J
    [J]. PHYSICA D, 1989, 36 (1-2): : 109 - 110
  • [49] Simulation of the dynamic behavior of one-dimensional cellular automata using reconfigurable computing
    Weinert, Wagner R.
    Benitez, Cesar
    Lopes, Heitor S.
    Erig Lima, Carlos R.
    [J]. RECONFIGURABLE COMPUTING: ARCHITECTURES, TOOLS AND APPLICATIONS, 2007, 4419 : 385 - +
  • [50] From One-dimensional to Two-dimensional Cellular Automata
    Dennunzio, Alberto
    [J]. FUNDAMENTA INFORMATICAE, 2012, 115 (01) : 87 - 105