Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites

被引:39
|
作者
Hsu, Myat Noe [1 ,2 ]
Luo, Rongcong [1 ]
Kwek, Kerwin Zeming [1 ]
Por, Yong Chen [3 ]
Zhang, Yong [1 ,2 ,4 ]
Chen, Chia-Hung [1 ,5 ]
机构
[1] Natl Univ Singapore, Dept Biomed Engn, Singapore 117575, Singapore
[2] Natl Univ Singapore, NUS Grad Sch Integrated Sci & Engn, Singapore 117456, Singapore
[3] KK Womens & Childrens Hosp, Dept Plast Reconstruct & Aesthet Surg, Singapore 229899, Singapore
[4] Natl Univ Singapore, Nanosci & Nanotechnol Initiat, Singapore 117581, Singapore
[5] Singapore Inst Neurotechnol, Singapore 117456, Singapore
来源
BIOMICROFLUIDICS | 2015年 / 9卷 / 05期
关键词
LOADED PLGA NANOPARTICLES; BEHAVIOR IN-VITRO; POROUS SILICON; DELIVERY; MICROCAPSULES; ENCAPSULATION; MONODISPERSE; MECHANISMS; PARTICLES; ESTRADIOL;
D O I
10.1063/1.4916230
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The poor solubility of many newly discovered drugs has resulted in numerous challenges for the time-controlled release of therapeutics. In this study, an advanced drug delivery platform to encapsulate and deliver hydrophobic drugs, consisting of poly (lactic-co-glycolic acid) (PLGA) nanoparticles incorporated within poly (ethylene glycol) (PEG) microgels, was developed. PLGA nanoparticles were used as the hydrophobic drug carrier, while the PEG matrix functioned to slow down the drug release. Encapsulation of the hydrophobic agents was characterized by fluorescence detection of the hydrophobic dye Nile Red within the microgels. In addition, the microcomposites prepared via the droplet-based microfluidic technology showed size tunability and a monodisperse size distribution, along with improved release kinetics of the loaded cargo compared with bare PLGA nanoparticles. This composite system has potential as a universal delivery platform for a variety of hydrophobic molecules. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microspheres
    Li, JK
    Wang, N
    Wu, XS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 214 : 295 - POLY
  • [22] Elaboration of Charged Poly(Lactic-co-Glycolic Acid) Microparticles for Effective Release of Tranexamic Acid
    Huang, Ming-Hsi
    Huang, Shun-Ying
    Chen, Yi-Xuan
    Chen, Cheng-You
    Lin, Yung-Sheng
    POLYMERS, 2020, 12 (04)
  • [23] Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid
    Puppi, Dario
    Piras, Anna Maria
    Detta, Nicola
    Dinucci, Dinuccio
    Chiellini, Federica
    ACTA BIOMATERIALIA, 2010, 6 (04) : 1258 - 1268
  • [24] Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications
    Petricca, SE
    Marra, KG
    Kumta, PN
    ACTA BIOMATERIALIA, 2006, 2 (03) : 277 - 286
  • [25] Polyhydroxyalkanoate Decelerates the Release of Paclitaxel from Poly(lactic-co-glycolic acid) Nanoparticles
    Lee, Si Yeong
    Kim, So Yun
    Ku, Sook Hee
    Park, Eun Ji
    Jang, Dong-Jin
    Kim, Sung Tae
    Kim, Seong-Bo
    PHARMACEUTICS, 2022, 14 (08)
  • [26] Loading of gentamicin onto poly lactic-co-glycolic acid and poly lactic-co-glycolic acid/nano-hydroxyapatite composite microspheres.
    Nojehdehian, Hanieh
    Ekrami, Malihe
    Shahriari, Mehrnoosh Hasan
    Karimi, Reza
    Jaberiansari, Zahra
    BIOMEDICAL RESEARCH-INDIA, 2016, 27 (01): : 70 - 78
  • [27] Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery
    Nabar, Gauri M.
    Mahajan, Kalpesh D.
    Calhoun, Mark A.
    Duong, Anthony D.
    Souva, Matthew S.
    Xu, Jihong
    Czeisler, Catherine
    Puduvalli, Vinay K.
    Otero, Jose Javier
    Wyslouzil, Barbara E.
    Winter, Jessica O.
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2018, 13 : 351 - 366
  • [28] Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach
    Kozaki, Masato
    Kobayashi, Shin-Ichiro
    Goda, Yukihiro
    Okuda, Haruhiro
    Sakai-Kato, Kumiko
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2017, 65 (03) : 218 - 228
  • [29] Poly(lactic-co-glycolic acid) microparticles in fibrin glue for local, sustained delivery of bupivacaine
    Kim, Se-Na
    Choi, Byeong Hyeon
    Kim, Hyun Koo
    Choy, Young Bin
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 75 : 86 - 92
  • [30] Correction to: Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview
    Paolo Blasi
    Journal of Pharmaceutical Investigation, 2019, 49 (6) : 669 - 669