Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

被引:823
|
作者
Errico, Claudia [1 ,2 ,3 ]
Pierre, Juliette [1 ,2 ,3 ]
Pezet, Sophie [4 ,5 ]
Desailly, Yann [1 ,2 ,3 ]
Lenkei, Zsolt [4 ,5 ]
Couture, Olivier [1 ,2 ,3 ]
Tanter, Mickael [1 ,2 ,3 ]
机构
[1] INSERM, Inst Langevin, 1 Rue Jussieu, F-75005 Paris, France
[2] PSL Res Univ, ESPCI ParisTech, Inst Langevin, F-75005 Paris, France
[3] CNRS, UMR 7587, F-75005 Paris, France
[4] CNRS, UMR 8249, F-75005 Paris, France
[5] PSL Res Univ, ESPCI ParisTech, Brain Plast Unit, F-75005 Paris, France
关键词
ACOUSTIC SUPERRESOLUTION; MOUSE-BRAIN; BREAKING; VELOCITY; LIMIT;
D O I
10.1038/nature16066
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade(1). In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents-inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non-invasive microscopy in animals and humans using ultrasound. We anticipate that ultrafast ultrasound localization microscopy may become an invaluable tool for the fundamental understanding and diagnostics of various disease processes that modify the microvascular blood flow, such as cancer, stroke and arteriosclerosis.
引用
下载
收藏
页码:499 / +
页数:9
相关论文
共 50 条
  • [1] Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging
    Claudia Errico
    Juliette Pierre
    Sophie Pezet
    Yann Desailly
    Zsolt Lenkei
    Olivier Couture
    Mickael Tanter
    Nature, 2015, 527 : 499 - 502
  • [2] DEEP LEARNING FOR SUPER-RESOLUTION VASCULAR ULTRASOUND IMAGING
    van Sloun, Ruud J. G.
    Solomon, Oren
    Bruce, Matthew
    Khaing, Zin Z.
    Eldar, Yonina C.
    Mischi, Massimo
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1055 - 1059
  • [3] Super-Resolution Ultrasound Localization Microscopy Through Deep Learning
    van Sloun, Ruud J. G.
    Solomon, Oren
    Bruce, Matthew
    Khaing, Zin Z.
    Wijkstra, Hessel
    Eldar, Yonina C.
    Mischi, Massimo
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (03) : 829 - 839
  • [4] Localization with deep learning networks for super-resolution ultrasound imaging
    Brown, Katherine
    Redfern, Arthur D.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):
  • [5] Deep learning for super-resolution localization microscopy
    Zhou, Tianyang
    Luo, Jianwen
    Liu, Xin
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820
  • [6] Ultrasound Localization Microscopy and Super-Resolution: A State of the Art
    Couture, Olivier
    Hingot, Vincent
    Heiles, Baptiste
    Muleki-Seya, Pauline
    Tanter, Mickael
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (08) : 1304 - 1320
  • [7] Optical Flow Assisted Super-Resolution Ultrasound Localization Microscopy using Deep Learning
    Lee, Hyeonjik
    Oh, Seok-Hwan
    Kim, Myeong-Gee
    Kim, Young-Min
    Jung, Guil
    Bae, Hyeon-Min
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [8] Ultrafast Ultrasound Imaging for Super-Resolution Preclinical Cardiac PET
    Perez-Liva, Mailyn
    Yoganathan, Thulaciga
    Herraiz, Joaquin L.
    Poree, Jonathan
    Tanter, Mickael
    Balvay, Daniel
    Viel, Thomas
    Garofalakis, Anikitos
    Provost, Jean
    Tavitian, Bertrand
    MOLECULAR IMAGING AND BIOLOGY, 2020, 22 (05) : 1342 - 1352
  • [9] Ultrafast Ultrasound Imaging for Super-Resolution Preclinical Cardiac PET
    Mailyn Perez-Liva
    Thulaciga Yoganathan
    Joaquin L. Herraiz
    Jonathan Porée
    Mickael Tanter
    Daniel Balvay
    Thomas Viel
    Anikitos Garofalakis
    Jean Provost
    Bertrand Tavitian
    Molecular Imaging and Biology, 2020, 22 : 1342 - 1352
  • [10] A Review of Clinical Applications for Super-resolution Ultrasound Localization Microscopy
    Yi, Hui-ming
    Lowerison, Matthew R.
    Song, Peng-fei
    Zhang, Wei
    CURRENT MEDICAL SCIENCE, 2022, 42 (01) : 1 - 16