Optical Flow Assisted Super-Resolution Ultrasound Localization Microscopy using Deep Learning

被引:0
|
作者
Lee, Hyeonjik [1 ]
Oh, Seok-Hwan [1 ]
Kim, Myeong-Gee [1 ]
Kim, Young-Min [1 ]
Jung, Guil [1 ]
Bae, Hyeon-Min [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Elect Engn, Daejeon, South Korea
关键词
Ultrasound localization microscopy; super-resolution; optical flow; feedback loop;
D O I
10.1109/IUS54386.2022.9957762
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound localization microscopy provides resolution enhanced ultrasound images and demonstrates clinical potential in myocardial infarction and diabetes. The conventional model-driven methods localize the microbubble by tracing the peak of the point spread function. Such numerical schemes demonstrate weakness in identifying superimposed microbubbles, indicating the limitations for super-resolution (SR) images. Recently, learning-based approaches have been studied for precise localization of densely distributed microbubbles. However, prior arts reconstruct the SR images from static B-mode images, which results in inconsistent localization of microbubbles across sequential frames. In this paper, we propose a temporal relational ultrasound microscopy network (TRUM-Net). The TRUM-Net adopts optical flow estimation of consecutive frames and a feedback loop for detailed super-resolution imaging. The proposed scheme enhances the accuracy of microbubble localization by 25.8% and the structural similarity up to 54.9%.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Super-Resolution Ultrasound Localization Microscopy Through Deep Learning
    van Sloun, Ruud J. G.
    Solomon, Oren
    Bruce, Matthew
    Khaing, Zin Z.
    Wijkstra, Hessel
    Eldar, Yonina C.
    Mischi, Massimo
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (03) : 829 - 839
  • [2] Deep learning for super-resolution localization microscopy
    Zhou, Tianyang
    Luo, Jianwen
    Liu, Xin
    [J]. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820
  • [3] Deep learning massively accelerates super-resolution localization microscopy
    Wei Ouyang
    Andrey Aristov
    Mickaël Lelek
    Xian Hao
    Christophe Zimmer
    [J]. Nature Biotechnology, 2018, 36 : 460 - 468
  • [4] Deep learning massively accelerates super-resolution localization microscopy
    Ouyang, Wei
    Aristov, Andrey
    Lelek, Mickael
    Hao, Xian
    Zimmer, Christophe
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 460 - +
  • [5] Localization with deep learning networks for super-resolution ultrasound imaging
    Brown, Katherine
    Redfern, Arthur D.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):
  • [6] Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging
    Errico, Claudia
    Pierre, Juliette
    Pezet, Sophie
    Desailly, Yann
    Lenkei, Zsolt
    Couture, Olivier
    Tanter, Mickael
    [J]. NATURE, 2015, 527 (7579) : 499 - +
  • [7] Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging
    Claudia Errico
    Juliette Pierre
    Sophie Pezet
    Yann Desailly
    Zsolt Lenkei
    Olivier Couture
    Mickael Tanter
    [J]. Nature, 2015, 527 : 499 - 502
  • [8] Super-Resolution Ultrasound Localization Microscopy for Visualization of the Ocular Blood Flow
    Qian, Xuejun
    Huang, Chengwu
    Li, Runze
    Song, Brian J.
    Tchelepi, Hisham
    Shung, K. Kirk
    Chen, Shigao
    Humayun, Mark S.
    Zhou, Qifa
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (05) : 1585 - 1594
  • [9] 3-D super-resolution localization microscopy using deep learning method
    Lu, Mengyang
    Zhou, Tianyang
    Liu, Xin
    [J]. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS IX, 2020, 11190
  • [10] Ultrasound Localization Microscopy and Super-Resolution: A State of the Art
    Couture, Olivier
    Hingot, Vincent
    Heiles, Baptiste
    Muleki-Seya, Pauline
    Tanter, Mickael
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (08) : 1304 - 1320