Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations

被引:296
|
作者
Chang, LN [1 ]
Minic, D [1 ]
Okamura, N [1 ]
Takeuchi, T [1 ]
机构
[1] Virginia Tech, Dept Phys, Inst Particle Phys & Astrophys, Blacksburg, VA 24061 USA
关键词
D O I
10.1103/PhysRevD.65.125027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We determine the energy eigenvalues and eigenfunctions of the harmonic oscillator where the coordinates and momenta are assumed to obey the modified commutation relations [(x) over cap (i),(p) over cap (j)]=i (h) over bar[(1+beta(p) over cap (2))delta(ij)+beta(')(p) over cap (i)(p) over cap (j)]. These commutation relations are motivated by the fact that they lead to the minimal length uncertainty relations which appear in perturbative string theory. Our solutions illustrate how certain features of string theory may manifest themselves in simple quantum mechanical systems through the modification of the canonical commutation relations. We discuss whether such effects are observable in precision measurements on electrons trapped in strong magnetic fields.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Harmonic oscillator with minimal length uncertainty relations and ladder operators
    Dadic, I
    Jonke, L
    Meljanac, S
    [J]. PHYSICAL REVIEW D, 2003, 67 (08)
  • [2] Thermodynamic properties and algebraic solution of the N-dimensional harmonic oscillator with minimal length uncertainty relations
    Dossa, Finagnon A.
    [J]. PHYSICA SCRIPTA, 2021, 96 (10)
  • [3] Thermodynamics of harmonic oscillator with minimal length
    Koffa, D. J.
    Ibrahim, T. T.
    Omonile, J. F.
    Oladimeji, E. O.
    Gwani, M. M.
    Edogbanya, H. O.
    [J]. PHYSICA SCRIPTA, 2024, 99 (05)
  • [4] Algebraic solution and thermodynamic properties for the oneand two-dimensional Dirac oscillator with minimal length uncertainty relations
    Dagoudo, Leonie
    Dossa, Finagnon Anselme
    Avossevou, Gabriel Yves Hugues
    [J]. EPL, 2024, 147 (01)
  • [5] Massive fermions interacting via a harmonic oscillator in the presence of a minimal length uncertainty relation
    Falaye, B. J.
    Dong, Shi-Hai
    Oyewumi, K. J.
    Haiwi, K. F.
    Ikhdair, S. M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2015, 24 (11):
  • [6] REMARKS ON THE HARMONIC OSCILLATOR WITH A MINIMAL POSITION UNCERTAINTY
    Valtancoli, P.
    [J]. MODERN PHYSICS LETTERS A, 2012, 27 (19)
  • [7] Algebraic method for the harmonic oscillator with a minimal length
    Valtancoli, P.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
  • [8] COSMOLOGY WITH MINIMAL LENGTH UNCERTAINTY RELATIONS
    Vakili, Babak
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (07): : 1059 - 1071
  • [9] Exact Solution of D-Dimensional Klein-Gordon Oscillator with Minimal Length
    Y.Chargui
    L.Chetouani
    A.Trabelsi
    [J]. Communications in Theoretical Physics, 2010, 53 (02) : 231 - 236
  • [10] Exact Solution of D-Dimensional Klein-Gordon Oscillator with Minimal Length
    Chargui, Y.
    Chetouani, L.
    Trabelsi, A.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (02) : 231 - 236