Exact Solution of D-Dimensional Klein-Gordon Oscillator with Minimal Length

被引:34
|
作者
Chargui, Y. [1 ]
Chetouani, L. [2 ]
Trabelsi, A. [1 ]
机构
[1] Fac Sci Tunis, Unite Rech Phys Nucl & Hautes Energies, Tunis 1080, Tunisia
[2] Univ Constantine, Inst Phys, Dept Phys Theor, Constantine, Algeria
关键词
Klein-Gordon oscillator; minimal length; energy spectrum; GENERALIZED UNCERTAINTY PRINCIPLE; ELECTRON; CPT;
D O I
10.1088/0253-6102/53/2/05
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Specific modifications of the usual canonical commutation relations between position and momentum operators have been proposed in the literature in order to implement the idea of the existence of a minimal observable length. Here, we study a consequence of this proposal in relativistic quantum mechanics by solving in the momentum space representation the Klein-Gordon oscillator in arbitrary dimensions. The exact bound states spectrum and the corresponding momentum space wave function are obtained. Following Chang et al. (Phys. Rev. D65 (2002) 125027), we discuss constraint that can be placed on the minimal length by measuring the energy levels of an electron in a penning trap.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 50 条
  • [1] Exact Solution of D-Dimensional Klein-Gordon Oscillator with Minimal Length
    Y.Chargui
    L.Chetouani
    A.Trabelsi
    [J]. Communications in Theoretical Physics, 2010, 53 (02) : 231 - 236
  • [2] Exact solution of the Klein-Gordon equation in the presence of a minimal length
    Jana, T. K.
    Roy, R.
    [J]. PHYSICS LETTERS A, 2009, 373 (14) : 1239 - 1241
  • [3] Exact solutions of D-dimensional Klein-Gordon oscillator with Snyder-de Sitter algebra
    Hemame, Zoubir
    Falek, Mokhtar
    Moumni, Mustafa
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (10)
  • [4] Path integral treatment of the one-dimensional Klein-Gordon oscillator with minimal length
    Chargui, Y.
    Trabelsi, A.
    [J]. PHYSICA SCRIPTA, 2011, 84 (04)
  • [5] Cornell and Coulomb interactions for the D-dimensional Klein-Gordon equation
    Hassanabadi, H.
    Rahimov, H.
    Zarrinkamar, S.
    [J]. ANNALEN DER PHYSIK, 2011, 523 (07) : 566 - 575
  • [6] Exact solution of the one-dimensional Klein-Gordon equation with scalar and vector linear potentials in the presence of a minimal length
    Y Chargui
    L Chetouani
    A Trabelsi
    [J]. Chinese Physics B, 2010, 19 (02) : 47 - 51
  • [7] Exact solution of the one-dimensional Klein-Gordon equation with scalar and vector linear potentials in the presence of a minimal length
    Chargui, Y.
    Chetouani, L.
    Trabelsi, A.
    [J]. CHINESE PHYSICS B, 2010, 19 (02)
  • [8] Klein-Gordon oscillator in the presence of the minimal momentum
    Chung, Won Sang
    Hassanabadi, Hassan
    Farahani, Nasrin
    [J]. MODERN PHYSICS LETTERS A, 2019, 34 (25)
  • [9] THE KLEIN-GORDON OSCILLATOR
    BRUCE, S
    MINNING, P
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1993, 106 (05): : 711 - 713
  • [10] EXACT SOLUTION TO A NONLINEAR KLEIN-GORDON EQUATION
    BURT, PB
    REID, JL
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (01) : 43 - 45