Leibniz algebras constructed by Witt algebras

被引:1
|
作者
Camacho, L. M. [1 ]
Omirov, B. A. [2 ]
Kurbanbaev, T. K. [3 ]
机构
[1] Univ Seville, Dpto Matemat Aplicada 1, Avda Reina Mercedes, E-41012 Seville, Spain
[2] Natl Univ Uzbekistan, Dept Algebra & Funct Anal, Tashkent, Uzbekistan
[3] Uzbek Acad Sci, Inst Math, Tashkent, Uzbekistan
来源
LINEAR & MULTILINEAR ALGEBRA | 2019年 / 67卷 / 10期
关键词
Leibniz algebra; Witt Lie algebra; Leibniz representation; right Lie module; classification; REPRESENTATIONS; MODULES;
D O I
10.1080/03081087.2018.1480704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe infinite-dimensional Leibniz algebras whose associated Lie algebra is the Witt algebra and we prove the triviality of low-dimensional Leibniz cohomology groups of the Witt algebra with the coefficients in itself.
引用
收藏
页码:2048 / 2064
页数:17
相关论文
共 50 条
  • [41] WITT RINGS OF QUATERNION ALGEBRAS
    SLADEK, A
    JOURNAL OF ALGEBRA, 1986, 103 (01) : 267 - 272
  • [42] Local derivations on Witt algebras
    Chen, Yang
    Zhao, Kaiming
    Zhao, Yueqiang
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06): : 1159 - 1172
  • [43] Generalised Witt algebras and idealizers
    Sierra, Susan J.
    Spenko, Spela
    JOURNAL OF ALGEBRA, 2017, 483 : 415 - 428
  • [44] Witt type Lie algebras
    Yu, RWT
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (05) : 1471 - 1484
  • [45] Simple Deformed Witt Algebras
    Song, Guang'ai
    Xia, Chunguang
    ALGEBRA COLLOQUIUM, 2011, 18 (03) : 533 - 540
  • [46] Grobner bases in universal enveloping algebras of Leibniz algebras
    Insua, Manuel A.
    Ladra, Manuel
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 517 - 526
  • [47] From Leibniz Algebras to Lie 2-algebras
    Sheng, Yunhe
    Liu, Zhangju
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (01) : 1 - 5
  • [48] Leibniz algebras associated with representations of filiform Lie algebras
    Ayupov, Sh. A.
    Camacho, L. M.
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 181 - 195
  • [49] From Leibniz Algebras to Lie 2-algebras
    Yunhe Sheng
    Zhangju Liu
    Algebras and Representation Theory, 2016, 19 : 1 - 5
  • [50] JACOBSON-WITT ALGEBRAS AND LIE-ADMISSIBLE ALGEBRAS
    TOMBER, ML
    HADRONIC JOURNAL, 1981, 4 (02): : 183 - 198