Construction of MnO2/3-dimensional porous crack Ni for high-performance supercapacitors

被引:44
|
作者
Xu, Guo-rong [1 ,2 ]
Wen, Ya [2 ]
Min, Xiang-ping [2 ]
Dong, Wen-hao [2 ]
Tang, An-ping [2 ]
Song, Hai-shen [1 ,2 ]
机构
[1] Minist Educ, Key Lab Theoret Chem & Mol Simulat, Chenzhou, Hunan, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Chem & Chem Engn, Xiangtan 411201, Peoples R China
关键词
Supercapacitor; Porous crack nickel; Manganese dioxide; Electrochemical performance; MANGANESE-DIOXIDE NANOSHEETS; MICROWAVE-ASSISTED SYNTHESIS; NICKEL FOAM; OXIDE COMPOSITE; NANO-CABLES; HIGH-ENERGY; ELECTRODE; MNO2; DEPOSITION; ARRAYS;
D O I
10.1016/j.electacta.2015.10.136
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
MnO2/3-dimensional porous crack nickel (MnO2/3-DPCNi) electrode has been fabricated via an alloying/dealloying process and an electrochemical oxidation process. The construction of the 3-DPCNi was achieved by means of electrodeposition of Zn-Ni alloy on Ni foam substrate, followed by chemically dealloying process under free corrosion conditions. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the morphology and structure of the 3-DPCNi. The electrochemical properties of the MnO2/3-DPCNi electrode were investigated using cyclic voltammetry (CV), galvanostatic charge/discharge (GC/D) and electrochemical impedance spectroscopy (EIS) technique. It is shown that a layer Ni with a cracked network was well coated on the Ni foam substrate. Such porous crack structures of 3-DPCNi not only provided a conductive network to enhance the charge transport and mass transfer in the electrochemical process but also achieved a large MnO2 mass loading capacity of 14.4 mg cm(-2), which resulted in a high areal capacitance of 3.18 F cm(-2) at a current rate of 0.25 A g(-1). A specific capacitance of 682.8 F g(-1) was obtained based on the MnO2 mass loading density of 2.5 mg cm(-2) at a current rate of 0.25 A g(-1). Moreover, the MnO2/3-DPCNi electrode also exhibited a low ions diffusion resistance and a good cycling performance along with 93.3% specific capacitance retained after 1000 cycles. These results demonstrated that the 3-DPCNi was a promising supporting material for energy conversion and storage devices. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 50 条
  • [21] Three-dimensional Ni/MnO2 nanocylinder array with high capacitance for supercapacitors
    Xie, W. L.
    Sun, M. Y.
    Li, Y. Q.
    Zhang, B.
    Lang, X. Y.
    Zhu, Y. F.
    Jiang, Q.
    RESULTS IN PHYSICS, 2019, 12 : 1411 - 1416
  • [22] MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors
    Pian Zhang
    Yun-hao Wu
    Hao-ran Sun
    Jia-qi Zhao
    Zhi-ming Cheng
    Xiao-hong Kang
    InternationalJournalofMineralsMetallurgyandMaterials, 2021, 28 (10) : 1735 - 1744
  • [23] Microwave-Assisted Synthesis and Characterization of γ-MnO2 for High-Performance Supercapacitors
    Lorena Cuéllar-Herrera
    Elsa Arce-Estrada
    Antonio Romero-Serrano
    José Ortiz-Landeros
    Román Cabrera-Sierra
    Cindy Tirado-López
    Aurelio Hernández-Ramírez
    Josué López-Rodríguez
    Journal of Electronic Materials, 2021, 50 : 5577 - 5589
  • [24] Ag/MnO2 Nanorod as Electrode Material for High-Performance Electrochemical Supercapacitors
    Guo, Zengcai
    Guan, Yuming
    Dai, Chengxiang
    Mu, Jingbo
    Che, Hongwei
    Wang, Guangshuo
    Zhang, Xiaoliang
    Zhang, Zhixiao
    Zhang, Xiliang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (07) : 4904 - 4909
  • [25] Synthesis and control of high-performance MnO2/carbon nanotubes nanocomposites for supercapacitors
    Wang, Jia-Wei
    Chen, Ya
    Chen, Bai-Zhen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 184 - 197
  • [26] Synthesis of MnO2 Nanoparticle Decorated Graphene-Based Porous Composite Electrodes for High-Performance Supercapacitors
    Kang, D. N.
    Li, J.
    Xu, Y. H.
    Huang, W. X.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (07): : 6091 - 6108
  • [27] A self-supporting graphene/MnO2 composite for high-performance supercapacitors
    Xin, Guoxiang
    Wang, Yanhui
    Zhang, Jinhui
    Jia, Shaopei
    Zang, Jianbing
    Wang, Yafei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (32) : 10176 - 10184
  • [28] Microwave-Assisted Synthesis and Characterization of γ-MnO2 for High-Performance Supercapacitors
    Cuellar-Herrera, Lorena
    Arce-Estrada, Elsa
    Romero-Serrano, Antonio
    Ortiz-Landeros, Jose
    Cabrera-Sierra, Roman
    Tirado-Lopez, Cindy
    Hernandez-Ramirez, Aurelio
    Lopez-Rodriguez, Josue
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (10) : 5577 - 5589
  • [29] MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors
    Zhang, Pian
    Wu, Yun-hao
    Sun, Hao-ran
    Zhao, Jia-qi
    Cheng, Zhi-ming
    Kang, Xiao-hong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1735 - 1744
  • [30] High-performance supercapacitors based on MnO2 tube-in-tube arrays
    Lu, Xue-Feng
    Wang, An-Liang
    Xu, Han
    He, Xu-Jun
    Tong, Ye-Xiang
    Li, Gao-Ren
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) : 16560 - 16566