The complexity of degree anonymization by vertex addition

被引:11
|
作者
Bredereck, Robert [1 ]
Froese, Vincent [1 ]
Hartung, Sepp [1 ]
Nichterlein, Andre [1 ]
Niedermeier, Rolf [1 ]
Talmon, Nimrod [1 ]
机构
[1] TU Berlin, Inst Softwaretech & Theoret Informat, Berlin, Germany
关键词
Graph modification; Degree-constrained editing; NP-hardness; Parameterized complexity; Fixed-parameter tractability; Kernelization; MULTIVARIATE ALGORITHMICS; GRAPH;
D O I
10.1016/j.tcs.2015.07.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by applications in privacy-preserving data publishing, we study the problem of making an undirected graph k-anonymous by adding few vertices (together with some incident edges). That is, after adding these "dummy vertices", for every vertex degree d appearing in the resulting graph, there shall be at least k vertices with degree d. We explore three variants of vertex addition (justified by real-world considerations) and study their (parameterized) computational complexity. We derive mostly intractability results, even for very restricted cases (including trees and bounded-degree graphs) but also obtain some encouraging fixed-parameter tractability results. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 34
页数:19
相关论文
共 50 条
  • [41] ON VERTEX TRANSITIVE GRAPHS OF INFINITE DEGREE
    DIESTEL, R
    JUNG, HA
    MOLLER, RG
    ARCHIV DER MATHEMATIK, 1993, 60 (06) : 591 - 600
  • [42] Vertex degrees close to the average degree
    Pardey, Johannes
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [43] Degree distance and vertex-connectivity
    Ali, P.
    Mukwembi, S.
    Munyira, S.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 2802 - 2811
  • [44] Degree conditions for vertex switching reconstruction
    Krasikov, I
    DISCRETE MATHEMATICS, 1996, 160 (1-3) : 273 - 278
  • [45] The complexity of cluster vertex splitting and company
    TU Wien, Vienna, Austria
    Discrete Appl Math, 2025, 365 : 190 - 207
  • [46] On the Complexity of Digraph Colourings and Vertex Arboricity
    Hochstaettler, Winfried
    Schroeder, Felix
    Steiner, Raphael
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2020, 22 (01):
  • [47] On the complexity of singly connected vertex deletion
    Das, Avinandan
    Kanesh, Lawqueen
    Madathil, Jayakrishnan
    Muluk, Komal
    Purohit, Nidhi
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2022, 934 : 47 - 64
  • [48] Parameterized Complexity of Vertex Cover Variants
    Jiong Guo
    Rolf Niedermeier
    Sebastian Wernicke
    Theory of Computing Systems, 2007, 41 : 501 - 520
  • [49] On the complexity of the balanced vertex ordering problem
    Kára, J
    Kratochvíl, J
    Wood, DR
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2005, 3595 : 849 - 858
  • [50] The Complexity of Cluster Vertex Splitting and Company
    Firbas, Alexander
    Dobler, Alexander
    Holzer, Fabian
    Schafellner, Jakob
    Sorge, Manuel
    Villedieu, Anais
    Wissmann, Monika
    SOFSEM 2024: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2024, 14519 : 226 - 239