Universality classes of inflation

被引:88
|
作者
Roest, Diederik [1 ]
机构
[1] Univ Groningen, Ctr Theoret Phys, NL-9747 AG Groningen, Netherlands
关键词
inflation; physics of the early universe; cosmological parameters from CMBR;
D O I
10.1088/1475-7516/2014/01/007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate all single-field, slow-roll inflationary models whose slow-roll parameters scale as 1/N in the limit of a large number of e-folds N. We proof that all such models belong to two universality classes, characterised by a single parameter. One class contains small field models like hilltop inflation, while the other class consists of large field models like chaotic inflation. We give the leading expressions for the spectral index and tensor-to-scalar ratio r, which are universal for each class, plus subleading corrections for a number of models. This predicts r either to be unobservably small, r < 0.01, or close to the present observational limit, r approximate to 0.07.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Hybrid universality classes of systemic cascades
    I. Bonamassa
    B. Gross
    J. Kertész
    S. Havlin
    Nature Communications, 16 (1)
  • [32] Playing with universality classes of Barkhausen avalanches
    Felipe Bohn
    Gianfranco Durin
    Marcio Assolin Correa
    Núbia Ribeiro Machado
    Rafael Domingues Della Pace
    Carlos Chesman
    Rubem Luis Sommer
    Scientific Reports, 8
  • [33] Universality classes of driven lattice gases
    Garrido, Pedro L.
    Muñoz, Miguel A.
    De Los Santos, F.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (05):
  • [34] Universality Classes of Stabilizer Code Hamiltonians
    Weinstein, Zack
    Ortiz, Gerardo
    Nussinov, Zohar
    PHYSICAL REVIEW LETTERS, 2019, 123 (23)
  • [35] The universality classes in the parabolic Anderson model
    van der Hofstad, Remco
    Koenig, Wolfgang
    Moerters, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (02) : 307 - 353
  • [36] Fibonacci family of dynamical universality classes
    Popkov, Vladislav
    Schadschneider, Andreas
    Schmidt, Johannes
    Schuetz, Gunter M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (41) : 12645 - 12650
  • [37] Universality classes of driven lattice gases
    Garrido, PL
    Muñoz, MA
    de los Santos, F
    PHYSICAL REVIEW E, 2000, 61 (05): : R4683 - R4686
  • [38] Playing with universality classes of Barkhausen avalanches
    Bohn, Felipe
    Durin, Gianfranco
    Correa, Marcio Assolin
    Machado, Nubia Ribeiro
    Della Pace, Rafael Domingues
    Chesman, Carlos
    Sommer, Rubem Luis
    SCIENTIFIC REPORTS, 2018, 8
  • [39] Universality classes of optimal channel networks
    Maritan, A
    Colaiori, F
    Flammini, A
    Cieplak, M
    Banavar, JR
    SCIENCE, 1996, 272 (5264) : 984 - 986
  • [40] UNIVERSALITY CLASSES FOR DETERMINISTIC SURFACE GROWTH
    KRUG, J
    SPOHN, H
    PHYSICAL REVIEW A, 1988, 38 (08): : 4271 - 4283