Fluid-Structure Interaction Analysis on Membrane Behavior of a Microfluidic Passive Valve

被引:14
|
作者
Lin, Zhen-hao [1 ]
Li, Xiao-juan [1 ]
Jin, Zhi-jiang [1 ]
Qian, Jin-yuan [1 ,2 ]
机构
[1] Zhejiang Univ, Inst Proc Equipment, Coll Energy Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
microfluidic passive valve (MPV); fluid-structure interaction (FSI); flow rate; threshold pressure; elastic membrane; SLEEVE;
D O I
10.3390/membranes10100300
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, the effect of membrane features on flow characteristics in the microfluidic passive valve (MPV) and the membrane behavior against fluid flow are studied using the fluid-structure interaction (FSI) analysis. Firstly, the microvalve model with different numbers of microholes and pitches of microholes are designed to investigate the flow rate of the MPV. The result shows that the number of microholes on the membrane has a significant impact on the flow rate of the MPV, while the pitch of microholes has little effect on it. The constant flow rate maintained by the microvalve (the number of microholes n = 4) is 5.75 mL/min, and the threshold pressure to achieve the flow rate is 4 kPa. Secondly, the behavior of the membrane against the fluid flow is analyzed. The result shows that as the inlet pressure increases, the flow resistance of the MPV increases rapidly, and the deformation of the membrane gradually becomes stable. Finally, the effect of the membrane material on the flow rate and the deformation of the membrane are studied. The result shows that changes in the material properties of the membrane cause a decrease in the amount of deformation in all stages the all positions of the membrane. This work may provide valuable guidance for the optimization of microfluidic passive valve in microfluidic system.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [41] Fluid-structure interaction
    Ohayon, R.
    STRUCTURAL DYNAMICS - EURODYN 2005, VOLS 1-3, 2005, : 13 - 20
  • [42] Fluid-structure interaction analysis on flow field and vibration characteristics of gas proportional valve
    Liu, Fengguo
    Wan, Zhiyuan
    Cao, Shihua
    Zhao, Dongfang
    Liu, Guangqian
    Zhang, Keke
    FLOW MEASUREMENT AND INSTRUMENTATION, 2025, 101
  • [43] The influence of hematocrit on the hemodynamics of artificial heart valve using fluid-structure interaction analysis
    Yeh, Han Hung
    Barannyk, Oleksandr
    Grecov, Dana
    Oshkai, Peter
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 110 : 79 - 92
  • [44] A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve
    De Hart, J
    Baaijens, FPT
    Peters, GWM
    Schreurs, PJG
    JOURNAL OF BIOMECHANICS, 2003, 36 (05) : 699 - 712
  • [45] FLUID-STRUCTURE INTERACTION Fluid Structure Interaction and Sloshing
    Brochard, D.
    Tomoyo, Taniguchi
    Ma, D. C.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 4, 2012, : 389 - +
  • [46] Fluid-Structure Interaction
    Ohayon, Roger
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 53 - 59
  • [47] FLUID-STRUCTURE INTERACTION
    BELYTSCHKO, T
    COMPUTERS & STRUCTURES, 1980, 12 (04) : 459 - 469
  • [48] Fluid-structure interaction
    Technical Program Representative FSI
    ASME Pressure Vessels Piping Div. Publ. PVP, 2006,
  • [49] Operational modal analysis and fluid-structure interaction
    Vigso, M.
    Kabel, T.
    Tarpo, M.
    Brincker, R.
    Georgakis, C.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, : 2793 - 2803
  • [50] Fluid-structure interaction analysis of flexible turbomachinery
    Campbell, R. L.
    Paterson, E. G.
    JOURNAL OF FLUIDS AND STRUCTURES, 2011, 27 (08) : 1376 - 1391