ANALYTIC BERGMAN OPERATORS IN THE SEMICLASSICAL LIMIT

被引:11
|
作者
Rouby, Ophelie [1 ]
Sjostrand, Johannes [2 ]
San Vu Ngoc [3 ]
机构
[1] Lycee Edouard Branly, Boulogne Sur Mer, France
[2] Univ Bourgogne, CNRS, Dijon, France
[3] Univ Rennes, CNRS, Rennes, France
关键词
ADJOINT OPERATORS; CLASSICAL LIMIT; KAHLER-METRICS; KERNEL; QUANTIZATION; ASYMPTOTICS; THEOREM; SPACE;
D O I
10.1215/00127094-2020-0022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted L-2-spaces with analytic weights, and show that their kernel functions admit an asymptotic expansion in the class of analytic symbols. As a corollary, we obtain new estimates for asymptotic expansions of the Bergman kernel on C-n and for high powers of ample holomorphic line bundles over compact complex manifolds.
引用
收藏
页码:3033 / 3097
页数:65
相关论文
共 50 条