Large Eddy Simulation of wind turbine fatigue loading and yaw dynamics induced by wake turbulence

被引:22
|
作者
Chanprasert, W. [1 ]
Sharma, R. N. [1 ]
Cater, J. E. [2 ]
Norris, S. E. [1 ]
机构
[1] Univ Auckland, Dept Mech Engn, Auckland, New Zealand
[2] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
关键词
Atmospheric stability; Wind farms; Fatigue loads; Yaw control; Wake meandering; POWER OUTPUT; OFFSHORE; FARM; PERFORMANCE; MODEL;
D O I
10.1016/j.renene.2022.03.097
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A coupled Large Eddy Simulation (LES) and aeroelastic code was used to evaluate control responses and fatigue loading of a four-inline wind turbine array. Neutral and unstably stratified atmospheric boundary layers with hub-height wind speeds of 7 and 15 m/s were used for wind farm inflows. These cases operate in different control regions. It was found that for both incoming wind speeds, atmospheric stability has no significant impact on the fatigue loads of the front-row wind turbines. However, stability affected wake characteristics which caused differences in control response and fatigue experienced by downstream turbines. The most distinctive difference was observed at a downstream turbine in the above-rated condition where the shaft torsional load in neutral stability condition was up to 50% higher than the unstable case. A baseline active yaw controller was implemented in the below-rated condition, which caused higher fatigue on turbines in the wake compared to the fixed yaw turbine case, without any power output gain.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:208 / 222
页数:15
相关论文
共 50 条
  • [21] Effects of wind speed changes on wake instability of a wind turbine in a virtual wind tunnel using large eddy simulation
    Mo, Jang-Oh
    Choudhry, Amanullah
    Arjomandi, Maziar
    Kelso, Richard
    Lee, Young-Ho
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2013, 117 : 38 - 56
  • [22] Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers
    Macri, Stefano
    Aubrun, Sandrine
    Leroy, Annie
    Girard, Nicolas
    WIND ENERGY SCIENCE, 2021, 6 (02) : 585 - 599
  • [23] Effect of wind turbine nacelle on turbine wake dynamics in large wind farms
    Foti, Daniel
    Yang, Xiaolei
    Shen, Lian
    Sotiropoulos, Fotis
    JOURNAL OF FLUID MECHANICS, 2019, 869 : 1 - 26
  • [24] Experimental analysis of the wake dynamics of a modelled wind turbine during yaw manoeuvres
    Macri, S.
    Coupiac, O.
    Girard, N.
    Leroy, A.
    Aubrun, S.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [25] Large-Eddy Simulation of turbine wake in complex terrain
    Berg, J.
    Troldborg, N.
    Sorensen, N. N.
    Patton, E. G.
    Sullivan, P. P.
    WAKE CONFERENCE 2017, 2017, 854
  • [26] A nonlinear wake model of a wind turbine considering the yaw wake steering
    Li, Yunzhou
    Gao, Zhiteng
    Li, Shoutu
    Qi, Suiping
    Tang, Xiaoyu
    JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2024, 42 (03) : 715 - 727
  • [27] A nonlinear wake model of a wind turbine considering the yaw wake steering
    Yunzhou LI
    Zhiteng GAO
    Shoutu LI
    Suiping QI
    Xiaoyu TANG
    Journal of Oceanology and Limnology, 2024, 42 (03) : 715 - 727
  • [28] Dissipation of Turbulence in the Wake of a Wind Turbine
    Lundquist, J. K.
    Bariteau, L.
    BOUNDARY-LAYER METEOROLOGY, 2015, 154 (02) : 229 - 241
  • [29] Dissipation of Turbulence in the Wake of a Wind Turbine
    J. K. Lundquist
    L. Bariteau
    Boundary-Layer Meteorology, 2015, 154 : 229 - 241
  • [30] Large eddy simulation and linear stability analysis of active sway control for wind turbine array wake
    Li, Zhaobin
    Li, Yunliang
    Yang, Xiaolei
    PHYSICS OF FLUIDS, 2024, 36 (07)