A Data-Driven Approach to Security Science

被引:0
|
作者
Iyer, Ravishankar K. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In security more than in other computing disciplines, professionals depend heavily on rapid analysis of voluminous streams of data gathered by a combination of network-, file-, and system-level monitors. The data are used both to maintain a constant vigil against attacks and compromises on a target system and to improve the monitoring itself. While the focus of the security engineer is on ensuring operational security, it is our experience that the data are a gold mine of information that can be used to develop a greater fundamental insight and hence a stronger scientific basis for building, monitoring, and analyzing future secure systems. In order to facilitate timely and accurate detection and response to attacks several challenges must be addressed: 1. Challenge of navigating through a vast amount of data generated by security monitoring tools. 2. Challenge of conducting timely forensics and providing tools to extract and correlate information about the attack and its progress. 3. Challenge of validating and benchmarking the security monitoring infrastructure and the system resiliency to accidental errors and malicious attacks.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] A causality based feature selection approach for data-driven dynamic security assessment
    Bellizio, Federica
    Cremer, Jochen L.
    Sun, Mingyang
    Strbac, Goran
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2021, 201 (201)
  • [22] A Data-driven Security Game to Facilitate Information Security Education
    Lovgren, Dag Erik Homdrum
    Li, Jingyue
    Oyetoyan, Tosin Daniel
    [J]. 2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2019), 2019, : 256 - 257
  • [23] Data-driven Software Security: Models and Methods
    Erlingsson, Ulfar
    [J]. 2016 IEEE 29TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF 2016), 2016, : 9 - 15
  • [24] Defining Data Science by a Data-Driven Quantification of the Community
    Emmert-Streib, Frank
    Dehmer, Matthias
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (01): : 235 - 251
  • [25] Science, Policy, and Data-Driven Decisions in a Data Vacuum
    Kelly, Ryan P.
    Levin, Phillip S.
    Lee, Kai N.
    [J]. ECOLOGY LAW QUARTERLY, 2017, 44 (01) : 7 - 40
  • [26] Data-Driven Supervised Learning for Life Science Data
    Muench, Maximilian
    Raab, Christoph
    Biehl, Michael
    Schleif, Frank-Michael
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [27] A Data-Driven Approach to Vibrotactile Data Compression
    Liu, Xun
    Dohler, Mischa
    [J]. PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2019), 2019, : 341 - 346
  • [28] Application of Data Science and Machine Learning in the Prediction of College Dropout: A Data-Driven Predictive Approach
    Felix Jimenez, Axel Frederick
    Sanchez Lee, Vania Stephany
    Ibarra Belmonte, Isaul
    Parra Gonzalez, Ezra Federico
    [J]. 2023 12TH INTERNATIONAL CONFERENCE ON SOFTWARE PROCESS IMPROVEMENT, CIMPS 2023, 2023, : 234 - 243
  • [29] CODATA and global challenges in data-driven science
    Rybkina, A.
    Hodson, S.
    Gvishiani, A.
    Kabat, P.
    Krasnoperov, R.
    Samokhina, O.
    Firsova, E.
    [J]. RUSSIAN JOURNAL OF EARTH SCIENCES, 2018, 18 (04):
  • [30] 2022 Review of Data-Driven Plasma Science
    Anirudh, Rushil
    Archibald, Rick
    Asif, M. Salman
    Becker, Markus M.
    Benkadda, Sadruddin
    Bremer, Peer-Timo
    Bude, Rick H. S.
    Chang, C. S.
    Chen, Lei
    Churchill, R. M.
    Citrin, Jonathan
    Gaffney, Jim A.
    Gainaru, Ana
    Gekelman, Walter
    Gibbs, Tom
    Hamaguchi, Satoshi
    Hill, Christian
    Humbird, Kelli
    Jalas, Soeren
    Kawaguchi, Satoru
    Kim, Gon-Ho
    Kirchen, Manuel
    Klasky, Scott
    Kline, John L.
    Krushelnick, Karl
    Kustowski, Bogdan
    Lapenta, Giovanni
    Li, Wenting
    Ma, Tammy
    Mason, Nigel J.
    Mesbah, Ali
    Michoski, Craig
    Munson, Todd
    Murakami, Izumi
    Najm, Habib N.
    Olofsson, K. Erik J.
    Park, Seolhye
    Peterson, J. Luc
    Probst, Michael
    Pugmire, David
    Sammuli, Brian
    Sawlani, Kapil
    Scheinker, Alexander
    Schissel, David P.
    Shalloo, Rob J.
    Shinagawa, Jun
    Seong, Jaegu
    Spears, Brian K.
    Tennyson, Jonathan
    Thiagarajan, Jayaraman
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (07) : 1750 - 1838