Chern numbers of certain Lefschetz fibrations

被引:13
|
作者
Stipsicz, AI [1 ]
机构
[1] ELTE TTK, Dept Anal, H-1088 Budapest, Hungary
关键词
4-manifolds; Lefschetz fibrations; geography problem;
D O I
10.1090/S0002-9939-99-05172-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the geography problem of relatively minimal Lefschetz fibrations over surfaces of nonzero genus and prove that if the fiber-genus of the fibration is positive, then 0 less than or equal to c(1)(2) less than or equal to 5c(2) (equivalently, 0 less than or equal to c(1)(2) less than or equal to 10 chi(h)) holds for those symplectic 4-manifolds. A useful characterization of minimality of such symplectic 4-manifolds is also proved.
引用
收藏
页码:1845 / 1851
页数:7
相关论文
共 50 条
  • [21] CONVEX PLUMBINGS AND LEFSCHETZ FIBRATIONS
    Gay, David
    Mark, Thomas E.
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2013, 11 (03) : 363 - 375
  • [22] Lefschetz fibrations and symplectic homology
    McLean, Mark
    [J]. GEOMETRY & TOPOLOGY, 2009, 13 : 1877 - 1944
  • [23] Lefschetz fibrations over the disc
    Apostolakis, Nikos
    Piergallini, Riccardo
    Zuddas, Daniele
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 340 - 390
  • [24] On sections of hyperelliptic Lefschetz fibrations
    Tanaka, Shunsuke
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (04): : 2259 - 2286
  • [25] ON THE DIVISIBILITY OF CERTAIN CHERN NUMBERS .2.
    BARTON, J
    REES, E
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1982, 33 (131): : 263 - 265
  • [26] On Chern numbers of homology planes of certain types
    Sugie, T
    Miyanishi, M
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (02): : 331 - 358
  • [27] Existence of Broken Lefschetz Fibrations
    Baykur, R. Inanc
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [28] Lefschetz fibrations with arbitrary signature
    Baykur, R. Inanc
    Hamada, Noriyuki
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (08) : 2837 - 2895
  • [29] On the number of vanishing cycles in Lefschetz fibrations
    Stipsicz, AI
    [J]. MATHEMATICAL RESEARCH LETTERS, 1999, 6 (3-4) : 449 - 456
  • [30] NONHOLOMORPHIC LEFSCHETZ FIBRATIONS WITH (-1)-SECTIONS
    Hamada, Noriyuki
    Kobayashi, Ryoma
    Monden, Naoyuki
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (02) : 375 - 398