A spectral theory approach for extreme value analysis in a tandem of fluid queues

被引:3
|
作者
Bosman, J. W. [1 ,2 ]
Nunez-Queija, R. [1 ,3 ]
机构
[1] CWI, Stochast, NL-1090 GB Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Fac Sci, Amsterdam, Netherlands
[3] Univ Amsterdam, Korteweg de Vries Inst Math, Amsterdam, Netherlands
关键词
Fluid queue; Extreme value theory; Spectral analysis; Tandem of fluid queues; Gumbel distribution; Binet-Cauchy formula; Time varying service rates; SERVICES; BUFFERS;
D O I
10.1007/s11134-014-9395-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a model to evaluate performance of streaming media over an unreliable network. Our model consists of a tandem of two fluid queues. The first fluid queue is a Markov modulated fluid queue that models the network congestion, and the second queue represents the play-out buffer. For this model the distribution of the total amount of fluid in the congestion and play-out buffer corresponds to the distribution of the maximum attained level of the first buffer. We show that, under proper scaling and when we let time go to infinity, the distribution of the total amount of fluid converges to a Gumbel extreme value distribution. From this result, we derive a simple closed-form expression for the initial play-out buffer level that provides a probabilistic guarantee for undisturbed play-out.
引用
收藏
页码:121 / 154
页数:34
相关论文
共 50 条
  • [21] Heavy-traffic extreme-value limits for queues
    Glynn, PW
    Whitt, W
    OPERATIONS RESEARCH LETTERS, 1995, 18 (03) : 107 - 111
  • [22] A multivariate extreme value theory approach to anomaly clustering and visualization
    Chiapino, Mael
    Clemencon, Stephan
    Feuillard, Vincent
    Sabourin, Anne
    COMPUTATIONAL STATISTICS, 2020, 35 (02) : 607 - 628
  • [23] A multivariate extreme value theory approach to anomaly clustering and visualization
    Maël Chiapino
    Stephan Clémençon
    Vincent Feuillard
    Anne Sabourin
    Computational Statistics, 2020, 35 : 607 - 628
  • [24] COMBINING ALGEBRAIC APPROACH WITH EXTREME VALUE THEORY FOR SPIKE DETECTION
    Debbabi, Nehla
    Kratz, Marie
    Mboup, Mamadou
    El Asmi, Sadok
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 1836 - 1840
  • [25] Mortality and morbidity peaks modeling: An extreme value theory approach
    Chiu, Y.
    Chebana, F.
    Abdous, B.
    Belanger, D.
    Gosselin, P.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (05) : 1498 - 1512
  • [26] Portfolio Tail Risk: A Multivariate Extreme Value Theory Approach
    Bozovic, Milos
    ENTROPY, 2020, 22 (12) : 1 - 20
  • [27] Performance analysis of tandem queues with small buffers
    van Vuuren, Marcel
    Adan, Ivo J. B. F.
    IIE TRANSACTIONS, 2009, 41 (10) : 882 - 892
  • [29] Analysis of tandem queues with finite buffer capacity
    Wu, Kan
    Shen, Yichi
    Zhao, Ning
    IISE TRANSACTIONS, 2017, 49 (11) : 1001 - 1013
  • [30] The application of wavelet analysis in extreme-value theory
    Wu, SL
    Yan, S
    Jiang, JH
    WAVELET ANALYSIS AND ITS APPLICATIONS, AND ACTIVE MEDIA TECHNOLOGY, VOLS 1 AND 2, 2004, : 540 - 544