ON SMALL SUBSPACE LATTICES IN HILBERT SPACE

被引:4
|
作者
Dong, Aiju [1 ]
Wu, Wenming [2 ]
Yuan, Wei [3 ]
机构
[1] Xian Univ Arts & Sci, Coll Math & Comp Engn, Xian 710065, Peoples R China
[2] Chongqing Normal Univ, Coll Math, Chongqing 400047, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
projections; lattice; double triangle; reflexive; transitive; KADISON-SINGER ALGEBRAS;
D O I
10.1017/S1446788713000384
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the reflexivity and transitivity of a double triangle lattice of subspaces in a Hilbert space. We show that the double triangle lattice is neither reflexive nor transitive when some invertibility condition is satisfied (by the restriction of a projection under another). In this case, we show that the reflexive lattice determined by the double triangle lattice contains infinitely many projections, which partially answers a problem of Halmos on small lattices of subspaces in Hilbert spaces.
引用
收藏
页码:44 / 60
页数:17
相关论文
共 50 条
  • [31] Operator Hyperreflexivity of Subspace Lattices
    Bracic, J.
    Klis-Garlicka, K.
    Mueller, V.
    Todorov, I. G.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 68 (03) : 383 - 390
  • [32] Operator Hyperreflexivity of Subspace Lattices
    J. Bračič
    K. Kliś-Garlicka
    V. Müller
    I. G. Todorov
    Integral Equations and Operator Theory, 2010, 68 : 383 - 390
  • [33] DISTANCE FORMULAS FOR SUBSPACE LATTICES
    DAVIDSON, KR
    HARRISON, KJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 : 309 - 323
  • [34] SUPERLINEAR CONVERGENCE OF KRYLOV SUBSPACE METHODS FOR SELF-ADJOINT PROBLEMS IN HILBERT SPACE
    Herzog, Roland
    Sachs, Ekkehard
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (03) : 1304 - 1324
  • [35] Sub-Hilbert Lattices
    José Luis Castiglioni
    Víctor Fernández
    Héctor Federico Mallea
    Hernán Javier San Martín
    Studia Logica, 2023, 111 : 431 - 452
  • [36] Sub-Hilbert Lattices
    Luis Castiglioni, Jose
    Fernandez, Victor
    Federico Mallea, Hector
    Javier San Martin, Hernan
    STUDIA LOGICA, 2023, 111 (03) : 431 - 452
  • [37] Index of lattices and Hilbert polynomials
    Aleksentsev, Yu. M.
    MATHEMATICAL NOTES, 2006, 80 (3-4) : 313 - 317
  • [38] HILBERT POLYNOMIALS AND GEOMETRIC LATTICES
    ROSE, LL
    TERAO, H
    ADVANCES IN MATHEMATICS, 1990, 84 (02) : 209 - 225
  • [39] J-subspace lattices and subspace M-bases
    Longstaff, WE
    Panaia, O
    STUDIA MATHEMATICA, 2000, 139 (03) : 197 - 212
  • [40] Equations holding in Hilbert lattices
    Mayet, Rene
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (07) : 1257 - 1287