We study the reflexivity and transitivity of a double triangle lattice of subspaces in a Hilbert space. We show that the double triangle lattice is neither reflexive nor transitive when some invertibility condition is satisfied (by the restriction of a projection under another). In this case, we show that the reflexive lattice determined by the double triangle lattice contains infinitely many projections, which partially answers a problem of Halmos on small lattices of subspaces in Hilbert spaces.
机构:
UNLP, Dept Matemat, CONICET, Fac Ciencias Exactas, Casilla Correos 172, RA-1900 La Plata, ArgentinaUNLP, Dept Matemat, CONICET, Fac Ciencias Exactas, Casilla Correos 172, RA-1900 La Plata, Argentina
Luis Castiglioni, Jose
Fernandez, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl San Juan, Inst Ciencias Basicas, Area Matemat, Ave Jose I de la Roza Oeste 230, RA-5400 San Juan, ArgentinaUNLP, Dept Matemat, CONICET, Fac Ciencias Exactas, Casilla Correos 172, RA-1900 La Plata, Argentina
Fernandez, Victor
Federico Mallea, Hector
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl San Juan, Inst Ciencias Basicas, Area Matemat, Ave Jose I de la Roza Oeste 230, RA-5400 San Juan, ArgentinaUNLP, Dept Matemat, CONICET, Fac Ciencias Exactas, Casilla Correos 172, RA-1900 La Plata, Argentina
Federico Mallea, Hector
Javier San Martin, Hernan
论文数: 0引用数: 0
h-index: 0
机构:
UNLP, Dept Matemat, CONICET, Fac Ciencias Exactas, Casilla Correos 172, RA-1900 La Plata, ArgentinaUNLP, Dept Matemat, CONICET, Fac Ciencias Exactas, Casilla Correos 172, RA-1900 La Plata, Argentina