Extended bounds limiter for high-order finite-volume schemes on unstructured meshes

被引:28
|
作者
Tsoutsanis, Panagiotis [1 ]
机构
[1] Cranfield Univ, Ctr Computat Engn Sci, Cranfield MK43 0AL, Beds, England
基金
英国工程与自然科学研究理事会;
关键词
MUSCL; Unstructured; Finite-volume; Limiter; Discontinuous; ESSENTIALLY NONOSCILLATORY SCHEMES; DISCONTINUOUS GALERKIN METHOD; CONSERVATIVE DIFFERENCE SCHEME; FLUX RECONSTRUCTION SCHEMES; EULER EQUATIONS; EFFICIENT IMPLEMENTATION; HYPERBOLIC SYSTEMS; BASIC FORMULATION; WENO SCHEMES; GRIDS;
D O I
10.1016/j.jcp.2018.02.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper explores the impact of the definition of the bounds of the limiter proposed by Michalak and Ollivier-Gooch in [56] (2009), for higher-order Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) numerical schemes on unstructured meshes in the finite-volume (FV) framework. A new modification of the limiter is proposed where the bounds are redefined by utilising all the spatial information provided by all the elements in the reconstruction stencil. Numerical results obtained on smooth and discontinuous test problems of the Euler equations on unstructured meshes, highlight that the newly proposed extended bounds limiter exhibits superior performance in terms of accuracy and mesh sensitivity compared to the cell-based or vertex-based bounds implementations. Crown Copyright (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:69 / 94
页数:26
相关论文
共 50 条
  • [21] High resolution and high-order accurate finite volume solution of Euler equations on unstructured meshes
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 1996, 17 (06): : 658 - 662
  • [22] A Novel Multi-Dimensional Limiter for High-Order Finite Volume Methods on Unstructured Grids
    Liu, Yilang
    Zhang, Weiwei
    Li, Chunna
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (05) : 1385 - 1412
  • [23] High order finite volume schemes with IMEX time stepping for the Boltzmann model on unstructured meshes
    Boscheri, Walter
    Dimarco, Giacomo
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 387
  • [24] Realizable high-order finite-volume schemes for quadrature-based moment methods
    Vikas, V.
    Wang, Z. J.
    Passalacqua, A.
    Fox, R. O.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (13) : 5328 - 5352
  • [25] High-order adaptive finite-volume schemes in the context of multiresolution analysis for dyadic grids
    Castro, Douglas A.
    Gomes, Sonia M.
    Stolfi, Jorge
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 1 - 16
  • [26] High-order adaptive finite-volume schemes in the context of multiresolution analysis for dyadic grids
    Douglas A. Castro
    Sônia M. Gomes
    Jorge Stolfi
    [J]. Computational and Applied Mathematics, 2016, 35 : 1 - 16
  • [27] High-order cell-centered finite volume method for solid dynamics on unstructured meshes
    Castrillo, Pablo
    Schillaci, Eugenio
    Rigola, Joaquim
    [J]. COMPUTERS & STRUCTURES, 2024, 295
  • [28] Assessment of high-order finite volume methods on unstructured meshes for RANS solutions of aeronautical configurations
    Antoniadis, Antonis F.
    Tsoutsanis, Panagiotis
    Drikakis, Dimitris
    [J]. COMPUTERS & FLUIDS, 2017, 146 : 86 - 104
  • [29] High-order finite-volume modeling of drift waves
    Dorf, M.
    Dorr, M.
    Hittinger, J.
    Lee, W.
    Ghosh, D.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 373 : 446 - 454
  • [30] High-order, finite-volume methods in mapped coordinates
    Colella, P.
    Dorr, M. R.
    Hittinger, J. A. F.
    Martin, D. F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 2952 - 2976