An adaptive stepsize controlled solver for the dynamic WDM semiconductor optical amplifier response

被引:1
|
作者
Vagionas, C. [1 ]
Bos, J. [2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, GR-54006 Thessaloniki, Greece
[2] Phoenix Software, Enschede, Netherlands
来源
SEMICONDUCTOR LASERS AND LASER DYNAMICS VI | 2014年 / 9134卷
关键词
Semiconductor optical amplifier; Numerical Modelling; Multigrid; Adaptive time stepping; Implicit scheme; FLIP-FLOPS; RAM;
D O I
10.1117/12.2051778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A time-domain solver for the response of a Semiconductor Optical Amplifier (SOA) relying on multigrid numerical techniques and a wideband steady state material gain coefficient is presented for the first time. Multigrid techniques enable the efficient solution of implicit time discretization schemes for the associated system of coupled differential equations, namely the carrier rate equation in the time domain and the signal amplification in the spatial domain, which in turn enable accuracy-instead of stability-restricted time-discretization of the signals. This allows lifting off the limitations of an equidistant spatio-temporal grid for the representation of the incoming signals adopted by traditional explicit SOA models, releasing an adaptive stepsize controlled solver for the dynamic SOA response with dense time-sampling under a rapidly varying SOA signal output and scarce time-sampling when negligible changes are observed.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] WDM-PON system based on the laser light injected reflective semiconductor optical amplifier
    Park, SJ
    Kim, GY
    Park, TS
    OPTICAL FIBER TECHNOLOGY, 2006, 12 (02) : 162 - 169
  • [32] Multicasting in WDM-PON Using Cross-Gain Modulation in Semiconductor Optical Amplifier
    Lee, Kwanil
    Lee, Sang Bae
    Ghelfi, Paolo
    An Truong Nguyen
    Poti, Luca
    Prati, Giancarlo
    2010 36TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATION (ECOC), VOLS 1 AND 2, 2010,
  • [33] Reduction of semiconductor optical amplifier induced distortion and crosstalk in a 1.3μm WDM transport system
    Lu, HH
    Wang, WJ
    Su, HS
    Wang, CT
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (05) : 775 - 777
  • [34] Noise controlled semiconductor optical amplifier based on lateral cavity laser
    Carney, K.
    Lennox, R.
    Maldonado-Basilio, R.
    Philippe, S.
    Bradley, L.
    Landais, P.
    ELECTRONICS LETTERS, 2010, 46 (18) : 1288 - U73
  • [35] Dynamic traffic grooming with adaptive routing in optical WDM mesh networks
    Huang, SG
    Bo, MX
    Zhang, J
    Gu, WY
    NETWORK ARCHITECTURES, MANAGEMENT, AND APPLICATIONS III, PTS 1 AND 2, 2005, 6022
  • [36] A gain-clamped-semiconductor-optical-amplifier combined with a distributed Raman-fiber-amplifier: a good candidate as an inline amplifier for WDM networks
    Lee, HH
    Lee, D
    Chung, HS
    OPTICS COMMUNICATIONS, 2004, 229 (1-6) : 249 - 252
  • [37] Optical regeneration using a feedforward semiconductor optical amplifier with chirp-controlled filtering
    Conforti, E
    Gallep, CM
    Bordonalli, AC
    Kang, SM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 30 (06) : 438 - 442
  • [38] Performance analysis of control pulse in optical controlled apparatus based on semiconductor optical amplifier
    Li Ya-Jie
    Wu Chong-Qing
    Wang Yong-Jun
    Tang Qing-Shan
    ACTA PHYSICA SINICA, 2007, 56 (02) : 952 - 957
  • [39] Optical bit-WDM pipelined arithmetic unit uses semiconductor optical amplifier cross-gain modulation
    McAulay, AD
    PHOTONIC DEVICES AND ALGORITHMS FOR COMPUTING, 1999, 3805 : 209 - 215
  • [40] Reduction of the Influence of Optical Interferometric Crosstalk Noise in a WDM-PON System with a Reflective Semiconductor Optical Amplifier: An Overview
    Urban, P. J.
    De Waardt, H.
    Ciaramella, E.
    Koonen, A. M. J.
    2010 12TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,