S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity

被引:272
|
作者
Travlou, Nikolina A. [1 ,2 ]
Giannakoudakis, Dimitrios A. [1 ,2 ]
Algarra, Manuel [3 ,4 ]
Labella, Alejandro M. [5 ]
Rodriguez-Castellon, Enrique [3 ]
Bandosz, Teresa J. [1 ,2 ]
机构
[1] CUNY City Coll, Dept Chem, New York, NY 10031 USA
[2] CUNY, PhD Program Chem, Grad Ctr, New York, NY 10016 USA
[3] Univ Malaga, Dept Inorgan Chem, Fac Sci, Campus Teatinos, E-29071 Malaga, Spain
[4] Univ Madeira, Madeira Chem Res Ctr CQM, Campus Penteada, P-9020105 Funchal, Portugal
[5] Univ Malaga, Dept Microbiol, Fac Sci, E-29071 Malaga, Spain
关键词
BIOLOGICAL APPLICATIONS; SILVER NANOPARTICLES; CATALYTIC-ACTIVITY; GRAPHENE OXIDE; BACTERIA; CHARGE; ENHANCEMENT; RESISTANCE; CHALLENGES; MECHANISM;
D O I
10.1016/j.carbon.2018.04.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfur and nitrogen-doped carbons quantum dots (S-CQDs and N-CQDs) were obtained using a simple hydrothermal treatment of S- or N-containing organic compounds/polymers. They were evaluated for their bactericidal activity against representative Gram-negative (Escherichia coli, CECT 831) and Gram-positive (Bacillus subtilis subsp. subtilis 168) bacterial strains, using a qualitative estimation approach. Quantitative tests revealed greater effectiveness of N-CQDs compared to S-CQDs. The bactericidal activity of the dots was linked to their specific surface chemistry, and their sizes in the range of nanometers. In the case of the N-CQDs, amides and amines played the most important role in enhancing bactericidal function. They caused a bacterial death which was linked to the electrostatic interactions between their protonated forms and the lipids of the bacterial cell membrane. It is also possible that the ability to activate oxygen species by the CQDs surface played some role. S-CQDs showed a much lower bactericidal activity compared to that of N-CQDs. These dots (S-CQDS), containing mainly a negatively charged surface due to dissociation of sulfonic/carboxylic groups and sulfates, showed a size dependent rather than a chemistry dependent (electrostatic interactions) inhibition of the Gram-positive bacterial growth. This is the first study where the role of different heteroatoms incorporated to CQDs is examined in the context of the bactericidal activity. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 50 条
  • [41] Electrochemical Detection of Bisphenol A Based on N-Doped Carbon Quantum Dots@Carbon Nanotubes Composite
    Chen, Zhongzhen
    Huang, Haiping
    Chen, Yanan
    Ye, Ying
    Wu, Shuzhen
    Wang, Wenjing
    Hu, Yongmei
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (12) : 7610 - 7617
  • [42] Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor
    Li, Libo
    Liu, Dong
    Wang, Kun
    Mao, Hanping
    You, Tianyan
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 252 : 17 - 23
  • [43] N-Doped Graphene Quantum Dots Using Different Bases
    Naik, M. Jaya Prakash
    Mohanta, Sourajit
    Mandal, Peetam
    Saha, Mitali
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (01)
  • [44] N, S, and P-Co-doped Carbon Quantum Dots: Intrinsic Peroxidase Activity in a Wide pH Range and Its Antibacterial Applications
    Tripathi, Kumud Malika
    Ahn, Hee Tae
    Chung, Minsoo
    Le, Xuan Ai
    Saini, Deepika
    Bhati, Anshu
    Sonkar, Sumit Kumar
    Kim, Moon Il
    Kim, TaeYoung
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (10): : 5527 - 5537
  • [45] N, S-doped Graphene Quantum Dots Grafted Graphitic Carbon Nitride to Boost its Photocatalytic Hydrogen Evolution and Antibacterial Activity
    Li, Jinlun
    Liu, Hulin
    Bai, Xin
    Rao, Xi
    Zhang, Yongping
    NANO, 2022, 17 (09)
  • [46] Synthesis and upconversion luminescence of N-doped graphene quantum dots
    Li, Ming
    Wu, Wenbin
    Ren, Wencai
    Cheng, Hui-Ming
    Tang, Nujiang
    Zhong, Wei
    Du, Youwei
    APPLIED PHYSICS LETTERS, 2012, 101 (10)
  • [47] Intraband absorption in n-doped InAs/GaAs quantum dots
    Sauvage, S
    Boucaud, P
    Julien, FH
    Gerard, JM
    ThierryMieg, V
    APPLIED PHYSICS LETTERS, 1997, 71 (19) : 2785 - 2787
  • [48] Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform
    Qian, Zhaosheng
    Ma, Juanjuan
    Shan, Xiaoyue
    Feng, Hui
    Shao, Linxiang
    Chen, Jianrong
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (08) : 2254 - 2263
  • [49] Green synthesis of N-doped carbon quantum dots for the detection of nitrite ion in water sample
    Zhao, J.
    Song, Q.
    Wu, F.
    Guo, X.
    Xu, T.
    5TH INTERNATIONAL CONFERENCE ON WATER RESOURCE AND ENVIRONMENT (WRE 2019), 2019, 344
  • [50] Preparation of n-doped carbon quantum dots for the detection of PA in real explosion dust samples
    Wu, Xiaojing
    Li, Hongda
    MICROCHEMICAL JOURNAL, 2024, 201