Soil model parameter estimation with ensemble data assimilation

被引:5
|
作者
Orescanin, Biljana [2 ]
Rajkovic, Borivoj [2 ]
Zupanski, Milija [1 ]
Zupanski, Dusanka [1 ]
机构
[1] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA
[2] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia
来源
ATMOSPHERIC SCIENCE LETTERS | 2009年 / 10卷 / 02期
关键词
data assimilation; soil temperature model; ensemble; KALMAN FILTER; CLIMATE SENSITIVITY; THEORETICAL ASPECTS;
D O I
10.1002/asl.220
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A parameter estimation problem in context of ensemble data assimilation is addressed. In an example using a one-point soil temperature model, the parameters corresponding to the emissivity and to the effective depth between the surface and the lowest atmospheric model level are estimated together with the initial conditions for temperature. The nonlinear synthetic observations representing various fluxes are assimilated using the Maximum Likelihood Ensemble Filter (MLEF). The results indicate a benefit of simultaneous assimilation of initial conditions and parameters. The estimated uncertainties are in general agreement with actual uncertainties. Copyright (C) 2009 Royal Meteorological Society
引用
收藏
页码:127 / 131
页数:5
相关论文
共 50 条
  • [21] Comparison of ensemble data assimilation methods for the estimation of time-varying soil hydraulic parameters
    Liu, Kun
    Huang, Guanhua
    Simunek, Jiri
    Xu, Xu
    Xiong, Yunwu
    Huang, Quanzhong
    JOURNAL OF HYDROLOGY, 2021, 594
  • [22] A hybrid data assimilation scheme for model parameter estimation: Application to morphodynamic modelling
    Smith, Polly J.
    Dance, Sarah L.
    Nichols, Nancy K.
    COMPUTERS & FLUIDS, 2011, 46 (01) : 436 - 441
  • [23] Accounting for Model Errors in Ensemble Data Assimilation
    Li, Hong
    Kalnay, Eugenia
    Miyoshi, Takemasa
    Danforth, Christopher M.
    MONTHLY WEATHER REVIEW, 2009, 137 (10) : 3407 - 3419
  • [24] Representing model error in ensemble data assimilation
    Cardinali, C.
    Zagar, N.
    Radnoti, G.
    Buizza, R.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (05) : 971 - 985
  • [25] Ensemble-Based Data Assimilation of GPM DPR Reflectivity: Cloud Microphysics Parameter Estimation With the Nonhydrostatic Icosahedral Atmospheric Model (NICAM)
    Kotsuki, Shunji
    Terasaki, Koji
    Satoh, Masaki
    Miyoshi, Takemasa
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2023, 128 (05)
  • [26] Online Model Parameter Estimation With Ensemble Data Assimilation in the Real Global Atmosphere: A Case With the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and the Global Satellite Mapping of Precipitation data
    Kotsuki, Shunji
    Terasaki, Koji
    Yashiro, Hisashi
    Tomita, Hirofumi
    Satoh, Masaki
    Miyoshi, Takemasa
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (14) : 7375 - 7392
  • [27] Model identification and parameter estimation of elastoplastic constitutive model by data assimilation using the particle filter
    Murakami, Akira
    Shinmura, Hayato
    Ohno, Shintaro
    Fujisawa, Kazunori
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2018, 42 (01) : 110 - 131
  • [28] Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation
    Lue, Haishen
    Yu, Zhongbo
    Zhu, Yonghua
    Drake, Sam
    Hao, Zhenchun
    Sudicky, Edward A.
    ADVANCES IN WATER RESOURCES, 2011, 34 (03) : 395 - 406
  • [29] Data Assimilation Methods for Neuronal State and Parameter Estimation
    Moye, Matthew J.
    Diekman, Casey O.
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2018, 8
  • [30] Using global Bayesian optimization in ensemble data assimilation: parameter estimation, tuning localization and inflation, or all of the above
    Lunderman, Spencer
    Morzfeld, Matthias
    Posselt, Derek J.
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2021, 73 (01) : 1 - 16