FRACTIONAL STEP DISCRIMINANT PRUNING: A FILTER PRUNING FRAMEWORK FOR DEEP CONVOLUTIONAL NEURAL NETWORKS

被引:3
|
作者
Gkalelis, Nikolaos [1 ]
Mezaris, Vasileios [1 ]
机构
[1] CERTH ITI, 6th Km Charilaou Thermi Rd,POB 60361, Thessaloniki, Greece
基金
欧盟地平线“2020”;
关键词
Deep convolutional neural networks; asymptotic filter pruning; class-separability criteria;
D O I
10.1109/icmew46912.2020.9105979
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel pruning framework is introduced to compress noisy or less discriminant filters in small fractional steps, in deep convolutional networks. The proposed framework utilizes a class-separability criterion that can exploit effectively the labeling information in annotated training sets. Additionally, an asymptotic schedule for the pruning rate and scaling factor is adopted so that the selected filters' weights collapse gradually to zero, providing improved robustness. Experimental results on the CIFAR-10, Google speech commands (GSC) and ImageNet32 (a downsampled version of ILSVRC-2012) show the efficacy of the proposed approach(1).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Leveraging Structured Pruning of Convolutional Neural Networks
    Tessier, Hugo
    Gripon, Vincent
    Leonardon, Mathieu
    Arzel, Matthieu
    Bertrand, David
    Hannagan, Thomas
    [J]. 2022 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2022, : 174 - 179
  • [42] Flattening Layer Pruning in Convolutional Neural Networks
    Jeczmionek, Ernest
    Kowalski, Piotr A.
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [43] A Discriminant Information Approach to Deep Neural Network Pruning
    Hou, Zejiang
    Kung, Sun-Yuan
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9553 - 9560
  • [44] Filter Pruning with Convolutional Approximation Small Model Framework
    Intraraprasit, Monthon
    Chitsobhuk, Orachat
    [J]. COMPUTATION, 2023, 11 (09)
  • [45] Filter Level Pruning Based on Similar Feature Extraction for Convolutional Neural Networks
    Li, Lianqiang
    Xu, Yuhui
    Zhu, Jie
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (04) : 1203 - 1206
  • [46] Methods for Pruning Deep Neural Networks
    Vadera, Sunil
    Ameen, Salem
    [J]. IEEE ACCESS, 2022, 10 : 63280 - 63300
  • [47] FILTER PRUNING BASED ON LOCAL GRADIENT ACTIVATION MAPPING IN CONVOLUTIONAL NEURAL NETWORKS
    Intraraprasit, Monthon
    Chitsobhuk, Orachat
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (06): : 1697 - 1715
  • [48] Hardware-Aware Evolutionary Explainable Filter Pruning for Convolutional Neural Networks
    Christian Heidorn
    Muhammad Sabih
    Nicolai Meyerhöfer
    Christian Schinabeck
    Jürgen Teich
    Frank Hannig
    [J]. International Journal of Parallel Programming, 2024, 52 : 40 - 58
  • [49] Blending Pruning Criteria for Convolutional Neural Networks
    He, Wei
    Huang, Zhongzhan
    Liang, Mingfu
    Liang, Senwei
    Yang, Haizhao
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 3 - 15
  • [50] Discriminative Layer Pruning for Convolutional Neural Networks
    Jordao, Artur
    Lie, Maiko
    Schwartz, William Robson
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (04) : 828 - 837