Low-Temperature-Annealed Reduced Graphene Oxide-Polyaniline Nanocomposites for Supercapacitor Applications

被引:8
|
作者
Liao, Chen-Yu [1 ]
Chien, Hung-Hua [1 ]
Hao, Yu-Chuan [2 ]
Chen, Chieh-Wen [3 ]
Yu, Ing-Song [2 ]
Chen, Jian-Zhang [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Appl Mech, Taipei 10617, Taiwan
[2] Natl Dong Hwa Univ, Dept Mat Sci & Engn, Hualien 97401, Taiwan
[3] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
关键词
Supercapacitor; polyaniline; graphene; reduced graphene oxide; quasi-solid-state gel electrolyte; flexible electronics; CARBON MATERIALS; ELECTRODE; POLYPYRROLE; FABRICATION;
D O I
10.1007/s11664-018-6260-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Screen-printed reduced graphene oxide (rGO)-polyaniline (PANI) nanocomposites with/without post-annealing were used as the electrode of a supercapacitor with a polyvinyl alcohol/H2SO4 quasi-solid-state gel electrolyte. Annealing can remove part of the ineffective organic binders and thus enhance the supercapacitive performance. However, too high an annealing temperature may damage PANI, thus reducing the pseudocapacitance. Annealing at 100A degrees C for 10 min results in the best achieved areal capacitance of 102.73 mF/cm(2), as evaluated by cyclic voltammetry (CV) under a potential scan rate of 2 mV/s. The capacitance retention rate is 88% after 1000 CV cycles under bending with a bending radius of 0.55 cm.
引用
收藏
页码:3861 / 3868
页数:8
相关论文
共 50 条
  • [31] High-Performance Supercapacitor Electrode of HNO3 Doped Polyaniline/Reduced Graphene Oxide Nanocomposites
    Rini Jain
    Durlubh K. Sharma
    Satyendra Mishra
    Journal of Electronic Materials, 2019, 48 : 3122 - 3130
  • [32] Preparation of 3D reduced graphene oxide/carbon nanospheres/polyaniline ternary nanocomposites as supercapacitor electrode
    Li, Ruijun
    Xu, Hui
    Fu, Renjun
    Tan, Wensheng
    Qin, Yong
    Tao, Yongxin
    Kong, Yong
    REACTIVE & FUNCTIONAL POLYMERS, 2018, 125 : 101 - 107
  • [33] High-Performance Supercapacitor Electrode of HNO3 Doped Polyaniline/Reduced Graphene Oxide Nanocomposites
    Jain, Rini
    Sharma, Durlubh K.
    Mishra, Satyendra
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (05) : 3122 - 3130
  • [34] N-substituted Carboxyl Polyaniline Covalent Grafting Reduced Graphene Oxide Nanocomposites and Its Application in Supercapacitor
    Zhang, Jiali
    Gao, Jian
    Song, Qi
    Guo, Zanru
    Chen, Aixi
    Chen, Guang
    Zhou, Shuaifeng
    ELECTROCHIMICA ACTA, 2016, 199 : 70 - 79
  • [35] Reduced graphene oxide nanocomposites for optoelectronics applications
    Bano, N.
    Hussain, I.
    EL-Naggar, A. M.
    Albassam, A. A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (03):
  • [36] Reduced graphene oxide nanocomposites for optoelectronics applications
    N. Bano
    I. Hussain
    A. M. EL-Naggar
    A. A. Albassam
    Applied Physics A, 2019, 125
  • [37] Facile hydrothermal preparation of niobium pentaoxide decorated reduced graphene oxide nanocomposites for supercapacitor applications
    Murugan, M.
    Kumar, R. Mohan
    Alsalme, Ali
    Alghamdi, Abdulaziz
    Jayavel, R.
    CHEMICAL PHYSICS LETTERS, 2016, 650 : 35 - 40
  • [38] In-situ reduced graphene oxide nanosheets-polypyrrole nanotubes nanocomposites for supercapacitor applications
    Devi, Madhabi
    Kumar, A.
    SYNTHETIC METALS, 2016, 222 : 318 - 329
  • [39] Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites
    ANDrew T.Smith
    Anna Marie La Chance
    Songshan Zeng
    Bin Liu
    Luyi Sun
    Nano Materials Science, 2019, 1 (01) : 31 - 47
  • [40] Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites
    Smith, Andrew T.
    LaChance, Anna Marie
    Zeng, Songshan
    Liu, Bin
    Sun, Luyi
    NANO MATERIALS SCIENCE, 2019, 1 (01) : 31 - 47