Strain ratcheting failure of dented steel submarine pipes under combined internal pressure and asymmetric inelastic cycling

被引:16
|
作者
Ezzati, M. [1 ]
Naghipour, M. [1 ]
Zeinoddini, M. [2 ]
Zandi, A. P. [2 ]
Elyasi, M. [3 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Civil Engn, Babol, Iran
[2] KN Toosi Univ Technol, Dept Civil Engn, Tehran, Iran
[3] Babol Noshirvani Univ Technol, Dept Mech Engn, Babol, Iran
关键词
Strain ratcheting failure; Asymmetric inelastic cycling; Pressurized steel pipes; API-5L-X80; Gouged dent; Plain dent; CYLINDRICAL-SHELLS; AXIAL-COMPRESSION; LATERAL IMPACTS; STAINLESS-STEEL; CIRCULAR TUBES; ELBOW PIPE; BEHAVIOR; PIPELINES; STRENGTH; COLLAPSE;
D O I
10.1016/j.oceaneng.2020.108336
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper presents the results of an experimental study in which for the first time the progressive inelastic deformation of high strength steel pressurized pipes with plain and gouged dents was analyzed. The effect of some key loading and geometrical parameters such as initial pre-strain (epsilon(mon)) dent depth ratio (delta/D) and the presence of the gouge was studied. Local dents with a hemispherical shape and gouges with different dimensions were introduced on the surface of the specimens. Specimens with plain or gouged dents were first internally pressurized, axially compressed to an initial pre-strain then subjected to cyclic nonlinear stressing. The mechanical defects were found to drastically degrade the inelastic cyclic response of the pressurized steel pipes. The presence of a dent, even with small amounts of initial pre-strains, made the pressurized pipes vulnerable to ratcheting failure. Furthermore, the ratcheting responses of the gouged dented specimens significantly differed from those for the corresponding specimens with plain dents. In fact, the combination of a dent and gouge was the severest form of the defect and demonstrated the lowest number of cycles before failure. The degradation effects of gouge were strongly dependent upon the gouge geometry, dent depth and initial pre-strain level.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Calculating the time to creep failure of thin-walled pipes under internal pressure
    Golub, VP
    Kasperskaya, VV
    Rusinov, AA
    INTERNATIONAL APPLIED MECHANICS, 2004, 40 (04) : 396 - 404
  • [32] Stochastic Failure Analysis of Reinforced Thermoplastic Pipes Under Axial Loading and Internal Pressure
    Yang-yang Wang
    Min Lou
    Yu Wang
    Wu-gang Wu
    Feng Yang
    China Ocean Engineering, 2022, 36 : 614 - 628
  • [33] Calculating the time to creep failure of thin-walled pipes under internal pressure
    Golub, V.P.
    Kasperskaya, V.V.
    Rusinov, A.A.
    Prikladnaya Mekhanika, 2004, 40 (04): : 44 - 52
  • [34] FAILURE PRIDICTION OF GLASS FIBER-REINFORCED FLEXIBLE PIPES UNDER INTERNAL PRESSURE
    Zhang Y.
    Wang Y.-Y.
    Li C.-L.
    Lou M.
    Gongcheng Lixue/Engineering Mechanics, 2023, 40 (09): : 238 - 246
  • [35] Failure behavior analysis of steel strip-reinforced flexible pipe under combined tension and internal pressure
    Chen, Wei
    Xiong, Haichao
    Bai, Yong
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2020, 33 (06) : 727 - 753
  • [36] Ratcheting behaviour of elasto-plastic thin-walled pipes under internal pressure and subjected to cyclic axial loading
    da Costa Mattos, Heraldo S.
    Peres, Jadyr M. A.
    Melo, Marco Antonio C.
    THIN-WALLED STRUCTURES, 2015, 93 : 102 - 111
  • [37] ON THE FAILURE OF SPHERICAL STEEL CONTAINMENTS UNDER EXCESSIVE INTERNAL-PRESSURE
    GOLLER, B
    KRIEG, R
    MESSEMER, G
    WOLF, E
    NUCLEAR ENGINEERING AND DESIGN, 1987, 100 (02) : 205 - 219
  • [38] Ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure at 350 °C
    Chen, Gang
    Xu, Cheng
    Qu, Huan
    Chen, Xu
    JOURNAL OF NUCLEAR MATERIALS, 2017, 491 : 138 - 148
  • [39] The Temperature Effect on the Stress-strain State of Inelastic Torispherical Heads under Internal Pressure
    Moiseeva, V. E.
    Skvortsova, Z. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (05) : 2085 - 2093
  • [40] Limit bending moment for pipes with two circumferential flaws under combined internal pressure and bending
    Ye, Hao
    Qian, Jinyuan
    Yan, Sunting
    Jiang, Chenghang
    Wei, Lin
    Jin, Zhi-jiang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2016, 106 : 319 - 330