Deformations of singular symplectic varieties and termination of the log minimal model program

被引:8
|
作者
Lehn, Christian [1 ]
Pacienza, Gianluca [2 ,3 ]
机构
[1] Tech Univ, Fac Math, Reichenhainer Str 39, D-09126 Chemnitz, Germany
[2] Univ Strasbourg, Inst Rech Math Avancee, 7 Rue Ren Descartes, F-67084 Strasbourg, France
[3] CNRS, 7 Rue Ren Descartes, F-67084 Strasbourg, France
来源
ALGEBRAIC GEOMETRY | 2016年 / 3卷 / 04期
关键词
DISCREPANCIES; DECOMPOSITION; MANIFOLDS;
D O I
10.14231/AG-2016-018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize Huybrechts' theorem on deformation equivalence of birational irreducible symplectic manifolds to the singular setting. More precisely, under suitable natural hypotheses, we show that two birational symplectic varieties are locally trivial deformations of each other. As an application we show the termination of any log minimal model program for a pair (X; Delta) of a projective irreducible symplectic manifold X and an effective R-divisor Delta. To prove this result we follow Shokurov's strategy and show that LSC and ACC for minimal log discrepancies hold for all the models appearing along any log MMP of the initial pair.
引用
收藏
页码:392 / 406
页数:15
相关论文
共 50 条