Non-mitotic sets

被引:3
|
作者
Glasser, Christian [1 ]
Selman, Alan L. [2 ]
Travers, Stephen [1 ]
Zhang, Liyu [3 ]
机构
[1] Univ Wurzburg, D-97074 Wurzburg, Germany
[2] SUNY Coll Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA
[3] Univ Texas Brownsville, Dept Comp & Informat Sci, Brownsville, TX 78520 USA
基金
美国国家科学基金会;
关键词
Computational complexity; Autoreducibility; Mitoticity; NP;
D O I
10.1016/j.tcs.2008.12.043
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the question of the existence of non-mitotic sets in NP. We show under various hypotheses that 1-tt-mitoticity and m-mitoticity differ on NP. T-autoreducibility and T-mitoticity differ oil NP (this contrasts the Situation in the recursion theoretic setting, where Ladner showed that autoreducibility and mitoticity coincide). 2-tt-autoreducibility does not imply weak 2-tt-mitoticity (from this it follows that autoreducibility and mitoticity are not equivalent for all reducibilities between 2-tt and T, although the notions coincide for m- and 1-tt-reducibility. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2011 / 2023
页数:13
相关论文
共 50 条
  • [41] Centrosome Size Sets Mitotic Spindle Length in Caenorhabditis elegans Embryos
    Greenan, Garrett
    Brangwynne, Clifford P.
    Jaensch, Steffen
    Gharakhani, Joebin
    Juelicher, Frank
    Hyman, Anthony A.
    CURRENT BIOLOGY, 2010, 20 (04) : 353 - 358
  • [42] The non measurable sets
    Wolff, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1923, 177 : 863 - 865
  • [43] Classical sets and non-classical sets: An overview
    Sumita Basu
    Resonance, 2005, 10 (8) : 38 - 48
  • [44] Classical Sets and Non-Classical Sets: An Overview
    Basu, Surnita
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2005, 10 (08): : 38 - 48
  • [45] Non-fuzzy sets for intuitionistic fuzzy sets
    Tuan, Han-Wen
    Chao, Henry Chung-Jen
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2018, 21 (7-8): : 1509 - 1514
  • [46] NON-RANDOMNESS OF MITOTIC RECOMBINATION IN YEAST
    WILKIE, D
    HAWTHORNE, D
    ANNALS OF HUMAN GENETICS, 1961, 25 (02) : 178 - &
  • [47] Inscribing compact non-σ-porous sets into analytic non-σ-porous sets
    Zeleny, M
    Zajícek, L
    FUNDAMENTA MATHEMATICAE, 2005, 185 (01) : 19 - 39
  • [48] NON-MEASURABLE SETS
    KHARAZISHVILI, AB
    DOKLADY AKADEMII NAUK SSSR, 1977, 232 (05): : 1028 - 1030
  • [49] ON NON-MEASURABLE SETS
    SOLOMON, DW
    DUKE MATHEMATICAL JOURNAL, 1969, 36 (01) : 183 - &
  • [50] From fuzzy sets to the decompositions of non-rigid sets
    Saidi, Fathi B.
    Jaballah, Ali
    FUZZY SETS AND SYSTEMS, 2007, 158 (16) : 1751 - 1766