A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem

被引:19
|
作者
Ayuso de Dios, Blanca [1 ]
Brezzi, Franco [2 ,3 ]
Marini, L. Donatella [4 ]
Xu, Jinchao [5 ]
Zikatanov, Ludmil [5 ]
机构
[1] Ctr Recerca Matemat, Barcelona 08193, Spain
[2] IUSS Pavia CP IMATI CNR, I-27100 Pavia, Italy
[3] KAU, Dept Math, Jeddah 21589, Saudi Arabia
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[5] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin; Stokes equation; Auxiliary space; MIXED FINITE-ELEMENTS; H(DIV); APPROXIMATION; INEQUALITIES;
D O I
10.1007/s10915-013-9758-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct Discontinuous Galerkin approximations of the Stokes problem where the velocity field is -conforming. This implies that the velocity solution is divergence-free in the whole domain. This property can be exploited to design a simple and effective preconditioner for the final linear system.
引用
收藏
页码:517 / 547
页数:31
相关论文
共 50 条
  • [41] DGIRM: Discontinuous Galerkin based isogeometric residual minimization for the Stokes problem
    Los, Marcin
    Rojas, Sergio
    Paszynski, Maciej
    Muga, Ignacio
    Calo, Victor M.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 50
  • [42] Hybrid Discontinuous Galerkin Discretisation and Domain Decomposition Preconditioners for the Stokes Problem
    Barrenechea, Gabriel R.
    Bosy, Michal
    Dolean, Victorita
    Nataf, Frederic
    Tournier, Pierre-Henri
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (04) : 703 - 722
  • [43] A Stable Discontinuous Galerkin Based Isogeometric Residual Minimization for the Stokes Problem
    Los, Marcin
    Rojas, Sergio
    Paszynski, Maciej
    Muga, Ignacio
    Calo, Victor M.
    COMPUTATIONAL SCIENCE - ICCS 2020, PT II, 2020, 12138 : 197 - 211
  • [44] A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems
    Girault, V
    Rivière, B
    Wheeler, MF
    MATHEMATICS OF COMPUTATION, 2005, 74 (249) : 53 - 84
  • [45] An Efficient and Effective Preconditioner for the Discontinuous Galerkin Domain Decomposition Method of Surface Integral Equation
    Xin, Xi-Min
    Gao, Hong-Wei
    Wang, Shu
    Peng, Zhen
    Sheng, Xin-Qing
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2023, 22 (10): : 2367 - 2371
  • [46] A numerical study of a semi-algebraic multilevel preconditioner for the local discontinuous Galerkin method
    Castillo, Paul E.
    Velazquez, Esov S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 74 (02) : 255 - 268
  • [47] A One-Level Additive Schwarz Preconditioner for a Discontinuous Petrov-Galerkin Method
    Barker, Andrew T.
    Brenner, Susanne C.
    Park, Eun-Hee
    Sung, Li-Yeng
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 417 - 425
  • [48] A DISCONTINUOUS GALERKIN METHOD BY PATCH RECONSTRUCTION FOR BIHARMONIC PROBLEM
    Li, Ruo
    Ming, Pingbing
    Sun, Zhiyuan
    Yang, Fanyi
    Yang, Zhijian
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) : 524 - 540
  • [49] Upscaling for the Laplace problem using a discontinuous Galerkin method
    Barucq, H.
    Chaumont-Frelet, T.
    Diaz, T. J.
    Peron, V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 240 : 192 - 203
  • [50] Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity
    Badia, S.
    Codina, R.
    Gudi, T.
    Guzman, J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 800 - 819