Phosphorylation of murine SAMHD1 regulates its antiretroviral activity

被引:39
|
作者
Wittmann, Sabine [1 ]
Behrendt, Rayk [2 ]
Eissmann, Kristin [1 ]
Volkmann, Bianca [1 ]
Thomas, Dominique [3 ]
Ebert, Thomas [4 ]
Cribier, Alexandra [5 ]
Benkirane, Monsef [5 ]
Hornung, Veit [4 ]
Bouzas, Nerea Ferreiros [3 ]
Gramberg, Thomas [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Clin & Mol Virol, D-91054 Erlangen, Germany
[2] Tech Univ Dresden, Inst Immunol, Med Fac Carl Gustav Carus, D-01307 Dresden, Germany
[3] Goethe Univ Frankfurt, Pharmazentrum Frankfurt ZAFES, Inst Clin Pharmacol, D-60590 Frankfurt, Germany
[4] Univ Bonn, Univ Hosp, Inst Mol Med, Bonn, Germany
[5] CNRS, UPR1142, Inst Genet Humaine, Lab Virol Mol, F-34000 Montpellier, France
来源
RETROVIROLOGY | 2015年 / 12卷
关键词
HIV-1; MLV; SAMHD1 knockout mouse; SAMHD1; phosphorylation; AICARDI-GOUTIERES-SYNDROME; RESTRICTION FACTOR SAMHD1; IMMUNODEFICIENCY-VIRUS TYPE-1; INNATE IMMUNE-RESPONSE; ACID BINDING-PROTEIN; HIV-1; RESTRICTION; NUCLEASE ACTIVITY; CELL-CYCLE; MUTATIONS; VPX;
D O I
10.1186/s12977-015-0229-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Human SAMHD1 is a triphosphohydrolase that restricts the replication of retroviruses, retroelements and DNA viruses in noncycling cells. While modes of action have been extensively described for human SAMHD1, only little is known about the regulation of SAMHD1 in the mouse. Here, we characterize the antiviral activity of murine SAMHD1 with the help of knockout mice to shed light on the regulation and the mechanism of the SAMHD1 restriction and to validate the SAMHD1 knockout mouse model for the use in future infectivity studies. Results: We found that endogenous mouse SAMHD1 restricts not only HIV-1 but also MLV reporter virus infection at the level of reverse transcription in primary myeloid cells. Similar to the human protein, the antiviral activity of murine SAMHD1 is regulated through phosphorylation at threonine 603 and is limited to nondividing cells. Comparing the susceptibility to infection with intracellular dNTP levels and SAMHD1 phosphorylation in different cell types shows that both functions are important determinants of the antiviral activity of murine SAMHD1. In contrast, we found the proposed RNase activity of SAMHD1 to be less important and could not detect any effect of mouse or human SAMHD1 on the level of incoming viral RNA. Conclusion: Our findings show that SAMHD1 in the mouse blocks retroviral infection at the level of reverse transcription and is regulated through cell cycle-dependent phosphorylation. We show that the antiviral restriction mediated by murine SAMHD1 is mechanistically similar to what is known for the human protein, making the SAMHD1 knockout mouse model a valuable tool to characterize the influence of SAMHD1 on the replication of different viruses in vivo.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] SAMHD1 Promotes the Antiretroviral Adaptive Immune Response in Mice Exposed to Lipopolysaccharide
    Barrett, BradleyS
    Nguyen, David H.
    Xu, Joella
    Guo, Kejun
    Shetty, Shravida
    Jones, Sean T.
    Mickens, Kaylee L.
    Shepard, Caitlin
    Roers, Axel
    Behrendt, Rayk
    Wu, Li
    Kim, Baek
    Santiago, Mario L.
    JOURNAL OF IMMUNOLOGY, 2022, 208 (02): : 444 - 453
  • [22] HIV Interplay with SAMHD1
    Schaller, Torsten
    Goujon, Caroline
    Malim, Michael H.
    SCIENCE, 2012, 335 (6074) : 1313 - 1314
  • [23] Substrates and Inhibitors of SAMHD1
    Hollenbaugh, Joseph A.
    Shelton, Jadd
    Tao, Sijia
    Amiralaei, Sheida
    Liu, Peng
    Lu, Xiao
    Goetze, Russell W.
    Zhou, Longhu
    Nettles, James H.
    Schinazi, Raymond F.
    Kim, Baek
    PLOS ONE, 2017, 12 (01):
  • [24] The ribonuclease activity of SAMHD1 is required for HIV-1 restriction
    Ryoo, Jeongmin
    Choi, Jongsu
    Oh, Changhoon
    Kim, Sungchul
    Seo, Minji
    Kim, Seok-Young
    Seo, Daekwan
    Kim, Jongkyu
    White, Tommy E.
    Brandariz-Nunez, Alberto
    Diaz-Griffero, Felipe
    Yun, Cheol-Heui
    Hollenbaugh, Joseph A.
    Kim, Baek
    Baek, Daehyun
    Ahn, Kwangseog
    NATURE MEDICINE, 2014, 20 (08) : 936 - 941
  • [25] The ribonuclease activity of SAMHD1 is required for HIV-1 restriction
    Jeongmin Ryoo
    Jongsu Choi
    Changhoon Oh
    Sungchul Kim
    Minji Seo
    Seok-Young Kim
    Daekwan Seo
    Jongkyu Kim
    Tommy E White
    Alberto Brandariz-Nuñez
    Felipe Diaz-Griffero
    Cheol-Heui Yun
    Joseph A Hollenbaugh
    Baek Kim
    Daehyun Baek
    Kwangseog Ahn
    Nature Medicine, 2014, 20 : 936 - 941
  • [26] Expression of SAMHD1 and its mutation on prognosis of colon cancer
    Zhang, Zhou
    Li, Ping
    Sun, Ping
    ONCOLOGY LETTERS, 2022, 24 (03)
  • [27] p21 regulates the HIV-1 restriction factor SAMHD1
    Pauls, Eduardo
    Ruiz, Alba
    Riveira-Munoz, Eva
    Permanyer, Marc
    Badia, Roger
    Clotet, Bonaventura
    Keppler, Oliver T.
    Ballana, Ester
    Este, Jose A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (14) : E1322 - E1324
  • [28] A Cyclin-Binding Motif in Human SAMHD1 Is Required for Its HIV-1 Restriction, dNTPase Activity, Tetramer Formation, and Efficient Phosphorylation
    St Gelais, Corine
    Kim, Sun Hee
    Maksimova, Victoria V.
    Buzovetsky, Olga
    Knecht, Kirsten M.
    Shepard, Caitlin
    Kim, Baek
    Xiong, Yong
    Wu, Li
    JOURNAL OF VIROLOGY, 2018, 92 (06)
  • [29] SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation
    Lee, Eun Ji
    Seo, Ji Hae
    Park, Ji-Hyeon
    Tam Thuy Lu Vo
    An, Sunho
    Bae, Sung-Jin
    Le, Hoang
    Lee, Hye Shin
    Wee, Hee-Jun
    Lee, Danbi
    Chung, Young-Hwa
    Kim, Jeong A.
    Jang, Myoung-Kuk
    Ryu, Soo Hyung
    Yu, Ensil
    Jang, Se Hwan
    Park, Zee Yong
    Kim, Kyu-Won
    ONCOTARGET, 2017, 8 (40) : 68517 - 68529
  • [30] SAMHD1 in cancer: curse or cure?
    Kerstin Schott
    Catharina Majer
    Alla Bulashevska
    Liam Childs
    Mirko H. H. Schmidt
    Krishnaraj Rajalingam
    Markus Munder
    Renate König
    Journal of Molecular Medicine, 2022, 100 : 351 - 372