Fuzzy Decision Tree using Soft Discretization and a Genetic Algorithm based Feature Selection Method

被引:0
|
作者
Chen, Min [1 ]
Ludwig, Simone A. [1 ]
机构
[1] N Dakota State Univ, Dept Comp Sci, Fargo, ND 58105 USA
关键词
Soft discretization; fuzzy decision tree; genetic algorithm;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In data mining, decision tree learning is an approach that uses a decision tree as a predictive model mapping observations to conclusions. The fuzzy extension of decision tree learning adopts the definition of soft discretization. Many studies have shown that decision tree learning can benefit from the soft discretization method leading to improved predictive accuracy. This paper implements a Fuzzy Decision Tree (FDT) classifier that is based on soft discretization by identifying the best "cut-point". The selection of important features of a data set is a very important preprocessing task in order to obtain higher accuracy of the classifier as well as to speed up the learning task. Therefore, we are applying a feature selection method that is based on the ideas of mutual information and genetic algorithms. The performance evaluation conducted has shown that our FDT classifier obtains in some cases higher values than other decision tree and fuzzy decision tree approaches based on measures such as true positive rate, false positive rate, precision and area under the curve.
引用
收藏
页码:238 / 244
页数:7
相关论文
共 50 条
  • [41] Face feature selection using genetic algorithm
    Yin Hongtao
    Fu Ping
    Sha Xuejun
    ISTM/2009: 8TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, 2009, : 980 - 983
  • [42] Frequency based feature selection method using whale algorithm
    Nematzadeh, Hossein
    Enayatifar, Rasul
    Mahmud, Maqsood
    Akbari, Ebrahim
    GENOMICS, 2019, 111 (06) : 1946 - 1955
  • [43] A hierarchical classification method based on feature selection and adaptive decision tree for SAR image
    He, Chu
    Liu, Ming
    Xu, Lianyu
    Liu, Longzhu
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2012, 37 (01): : 46 - 49
  • [44] SPEECH EMOTION RECOGNITION METHOD BASED ON IMPROVED DECISION TREE AND LAYERED FEATURE SELECTION
    Mao, Qirong
    Wang, Xiaojia
    Zhan, Yongzhao
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2010, 7 (02) : 245 - 261
  • [45] Sigmis: A Feature Selection Algorithm Using Correlation Based Method
    Blessie, E. Chandra
    Karthikeyan, E.
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2012, 6 (03) : 385 - 394
  • [46] Image feature selection based on genetic algorithm
    Lei, Liang
    Peng, Jun
    Yang, Bo
    Lecture Notes in Electrical Engineering, 2013, 219 LNEE (VOL. 4): : 825 - 831
  • [47] Deluge based Genetic Algorithm for feature selection
    Guha, Ritam
    Ghosh, Manosij
    Kapri, Souvik
    Shaw, Sushant
    Mutsuddi, Shyok
    Bhateja, Vikrant
    Sarkar, Ram
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (02) : 357 - 367
  • [48] Feature subset selection based on the genetic algorithm
    Yang, Jingwei
    Wang, Sile
    Chen, Yingyi
    Lu, Sukui
    Yang, Wenzhu
    ADVANCED TECHNOLOGIES IN MANUFACTURING, ENGINEERING AND MATERIALS, PTS 1-3, 2013, 774-776 : 1532 - +
  • [49] Deluge based Genetic Algorithm for feature selection
    Ritam Guha
    Manosij Ghosh
    Souvik Kapri
    Sushant Shaw
    Shyok Mutsuddi
    Vikrant Bhateja
    Ram Sarkar
    Evolutionary Intelligence, 2021, 14 : 357 - 367
  • [50] A Clustering Based Genetic Algorithm for Feature Selection
    Rostami, Mehrdad
    Moradi, Parham
    2014 6TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2014, : 112 - 116