Parameter estimation of the Hodgkin-Huxley model using metaheuristics: application to neuromimetic analog integrated circuits

被引:10
|
作者
Buhry, L. [1 ]
Saighi, S. [1 ]
Giremus, A. [1 ]
Grivel, E. [1 ]
Renaud, S. [1 ]
机构
[1] Univ Bordeaux, IMS Lab, CNRS, UMR 5218,ENSEIRB, F-33405 Talence, France
关键词
D O I
10.1109/BIOCAS.2008.4696902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 1952 Hodgkin and Huxley introduced the voltage-clamp technique to extract the parameters of the ionic channel model of a neuron. Although this method is widely used today, it has a lot of disadvantages. In this paper, we propose an alternative approach to the estimation method of the voltage-clamp technique using metaheuristics such as Simulated Annealing, Genetic Algorithms and Differential Evolution. This method avoids approximations of the original technique by simultaneously estimating all the parameters of a single ionic channel with a single fitness function. To compare the different methods, we apply them on measurements from a neuromimetic integrated circuit. This circuit, due to its analog behavior, provides us noisy data like a biological system. Therefore we can validate the efficiency of our method on experimental-like data.
引用
收藏
页码:173 / 176
页数:4
相关论文
共 50 条
  • [1] Automated Parameter Estimation of the Hodgkin-Huxley Model Using the Differential Evolution Algorithm: Application to Neuromimetic Analog Integrated Circuits
    Buhry, Laure
    Grassia, Filippo
    Giremus, Audrey
    Grivel, Eric
    Renaud, Sylvie
    Saighi, Sylvain
    [J]. NEURAL COMPUTATION, 2011, 23 (10) : 2599 - 2625
  • [2] Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits
    Buhry, Laure
    Pace, Michele
    Saighi, Sylvain
    [J]. NEUROCOMPUTING, 2012, 81 : 75 - 85
  • [3] State Filtering and Parameter Estimation for Hodgkin-Huxley Model
    Liao, Fang
    Lou, Xuyang
    Cui, Baotong
    Wu, Wei
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4658 - 4663
  • [4] Parameter estimation of the Hodgkin-Huxley gating model: An inversion procedure
    Wang, GJ
    Beaumont, J
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (04) : 1249 - 1267
  • [5] Analog implementation of a Hodgkin-Huxley model neuron
    Rutherford, George H.
    Mobille, Zach D.
    Brandt-Trainer, Jordan
    Follmann, Rosangela
    Rosa, Epaminondas, Jr.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2020, 88 (11) : 918 - 923
  • [6] Parameter Identification Problem in the Hodgkin-Huxley Model
    Mandujano Valle, Jemy A.
    Madureira, Alexandre L.
    [J]. NEURAL COMPUTATION, 2022, 34 (04) : 939 - 970
  • [7] Parameter Estimation of Hodgkin-Huxley Neuronal Model using Dual Extended Kalman Filter
    Lankarany, Milad
    Zhu, W. -P.
    Swamy, M. N. S.
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 2493 - 2496
  • [8] An improved parameter estimation method for Hodgkin-Huxley models
    Willms, AR
    Baro, DJ
    Harris-Warrick, RM
    Guckenheimer, J
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1999, 6 (02) : 145 - 168
  • [9] An Improved Parameter Estimation Method for Hodgkin-Huxley Models
    Allan R. Willms
    Deborah J. Baro
    Ronald M. Harris-Warrick
    John Guckenheimer
    [J]. Journal of Computational Neuroscience, 1999, 6 : 145 - 168
  • [10] Estimation of Parameters using Evolutionary Algorithm in Hodgkin-Huxley Model
    Deka, R.
    Dutta, Jiten. Ch.
    [J]. PROCEEDINGS OF THE 2016 IEEE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL & ELECTRONICS, INFORMATION, COMMUNICATION & BIO INFORMATICS (IEEE AEEICB-2016), 2016, : 219 - 223