Compatible Poisson brackets on Lie algebras

被引:43
|
作者
Bolsinov, AV [1 ]
Borisov, AV [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119899, Russia
基金
俄罗斯基础研究基金会;
关键词
compatible Poisson brackets; compatible Hamiltonian representation; Lax representation; integrable Hamiltonian system; bi-Hamiltonian vector field; Lie algebra;
D O I
10.1023/A:1019856702638
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the relationship between the representation of an integrable system as an L-A-pair with a spectral parameter and the existence of two compatible Hamiltonian representations of this system. We consider examples of compatible Poisson brackets on Lie algebras, as well as the corresponding integrable Hamiltonian systems and Lax representations.
引用
收藏
页码:10 / 30
页数:21
相关论文
共 50 条
  • [42] Compatible lie brackets and the Yang-Baxter equation
    Golubchik, IZ
    Sokolov, VV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 146 (02) : 159 - 169
  • [43] Compatible Lie Brackets and the Yang-Baxter Equation
    I. Z. Golubchik
    V. V. Sokolov
    Theoretical and Mathematical Physics, 2006, 146 : 159 - 169
  • [44] Ten Compatible Poisson Brackets on P5
    Nordstrom, Ville
    Polishchuk, Alexander
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [45] PERIODIC AUTOMORPHISMS, COMPATIBLE POISSON BRACKETS, AND GAUDIN SUBALGEBRAS
    DMITRI I. PANYUSHEV
    OKSANA S. YAKIMOVA
    Transformation Groups, 2021, 26 : 641 - 670
  • [46] Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras
    Bai, Chengming
    Bai, Ruipu
    Guo, Li
    Wu, Yong
    JOURNAL OF ALGEBRA, 2023, 632 : 535 - 566
  • [47] The sh Lie Structure of Poisson Brackets in Field Theory
    G. Barnich
    R. Fulp
    T. Lada
    J. Stasheff
    Communications in Mathematical Physics, 1998, 191 : 585 - 601
  • [48] The sh Lie structure of Poisson brackets in field theory
    Barnich, G
    Fulp, R
    Lada, T
    Stasheff, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (03) : 585 - 601
  • [49] Classification and Casimir invariants of Lie-Poisson brackets
    Thiffeault, JL
    Morrison, PJ
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) : 205 - 244
  • [50] COMPATIBLE ALGEBRA STRUCTURES OF LIE ALGEBRAS
    Kubo, F.
    RING THEORY 2007, PROCEEDINGS, 2009, : 235 - 239