On the minimum rank of adjacency matrices of regular graph

被引:0
|
作者
Liang, Xiu-dong [1 ]
机构
[1] So Yangtze Univ, Sch Sci, Wuxi 214122, Peoples R China
关键词
regular graphs; adjacency matrices; rank; lower bound;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims at obtaining the lower bound of minimum rank of adjacent matrices of k-regular graphs. Additionally, the exact values are obtained for k=2.
引用
收藏
页码:346 / 348
页数:3
相关论文
共 50 条
  • [31] MINIMUM RANK AND MINIMUM TRACE OF COVARIANCE MATRICES
    DELLARICCIA, G
    SHAPIRO, A
    PSYCHOMETRIKA, 1982, 47 (04) : 443 - 448
  • [32] Evaluating Regular Path Queries on Compressed Adjacency Matrices
    Arroyuelo, Diego
    Gomez-Brandon, Adrian
    Navarro, Gonzalo
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2023, 2023, 14240 : 35 - 48
  • [33] On the Binary and Boolean Rank of Regular Matrices
    Haviv, Ishay
    Parnas, Michal
    arXiv, 2022,
  • [34] LOSSY COMPRESSION OF ADJACENCY MATRICES BY GRAPH FILTER BANKS
    Yanagiya, Kenta
    Hara, Junya
    Higashi, Hiroshi
    Tanaka, Yuichi
    Ortega, Antonio
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2024, : 9386 - 9390
  • [35] On the binary and Boolean rank of regular matrices
    Haviv, Ishay
    Parnas, Michal
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2023, 134 : 73 - 86
  • [36] Minimum rank of matrices described by a graph or pattern over the rational, real and complex numbers
    Berman, Avi
    Friedland, Shmuel
    Hogben, Leslie
    Rothblum, Uriel G.
    Shader, Bryan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [37] Eigenvalues of the adjacency and Laplacian matrices for modified regular structural models
    Kaveh, A.
    Rahami, H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (12) : 1836 - 1855
  • [38] INVERTIBILITY OF ADJACENCY MATRICES FOR RANDOM d-REGULAR GRAPHS
    Huang, Jiaoyang
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (18) : 3977 - 4032
  • [39] On generalized Hadamard matrices of minimum rank
    Tonchev, VD
    FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (04) : 522 - 529
  • [40] An upper bound for the minimum rank of a graph
    Berman, Avi
    Friedland, Shmuel
    Hogben, Leslie
    Rothblum, Uriel G.
    Shader, Bryan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) : 1629 - 1638