Roadside Traffic Sign Detection Based on Faster R-CNN

被引:2
|
作者
Fu, Xingyu [1 ]
Fang, Bin [1 ]
Qian, Jiye [2 ]
Wu, Zhenni [1 ]
Zhu, Jiajie [1 ]
Du, Tongxin [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400030, Peoples R China
[2] State Grid Chongqing Elect Power Co, Elect Power Res Inst Chongqing, Chongqing 401123, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic sign detection; subcategory detection; faster R-CNN;
D O I
10.1145/3318299.3318348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an improved traffic sign detection method based on Faster R-CNN with dataset augmentation and subcategory detection scheme. Firstly, we extract natural scene frames from given videos and determine 20 categories of traffic signs. Secondly, we extend the image dataset and extract regions of interest, then manually annotate all categories. Thirdly, we train the Faster R-CNN model based on TensorFlow, then test the model and obtain the following evaluation indexes: the mean average precision is 99.07%, the recall rate is 99.66%, and the precision rate is 97.54%. Finally, we add the subcategory detection scheme to determine traffic light states, and we get the following evaluation indexes: the mean average precision is 99.50\%, the recall rate is 100%, and the precision rate is 94.40\%. Our experiments prove the robustness and accuracy for both traffic sign detection and subcategory detection of traffic light.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 50 条
  • [41] Tea Bud Detection Based on Faster R-CNN Network
    Zhu H.
    Li X.
    Meng Y.
    Yang H.
    Xu Z.
    Li Z.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (05): : 217 - 224
  • [42] Irregular Target Object Detection Based on Faster R-CNN
    Zhang, Bin
    Zhang, Yubo
    Pan, Qinghui
    2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252
  • [43] Improvement of Object Detection Based on Faster R-CNN and YOLO
    Fan, Jiayi
    Lee, JangHyeon
    Jung, InSu
    Lee, YongKeun
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [44] Vehicle Detection Based on an Imporved Faster R-CNN Method
    Lyu, Wentao
    Lin, Qiqi
    Guo, Lipeng
    Wang, Chengqun
    Yang, Zhenyi
    Xu, Weiqiang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (02) : 587 - 590
  • [45] An Improved Faster R-CNN for Object Detection
    Liu, Yu
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 119 - 123
  • [46] Road Traffic Sign Detection Method Based on RTS R-CNN Instance Segmentation Network
    Zhang, Guirong
    Peng, Yiming
    Wang, Hai
    SENSORS, 2023, 23 (14)
  • [47] Ganster R-CNN: Occluded Object Detection Network Based on Generative Adversarial Nets and Faster R-CNN
    Sun, Kelei
    Wen, Qiufen
    Zhou, Huaping
    IEEE ACCESS, 2022, 10 : 105022 - 105030
  • [48] Arabic Sign Language Recognition using Faster R-CNN
    Alawwad, Rahaf Abdulaziz
    Bchir, Ouiem
    Ben Ismail, Mohamed Maher
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 692 - 700
  • [49] An Improved Faster R-CNN Approach for Robust Hand Detection and Classification in Sign Language
    Wang, Jinwei
    Ye, Zhongfu
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [50] Traffic Sign Detection via Improved Sparse R-CNN for Autonomous Vehicles
    Liang, Tianjiao
    Bao, Hong
    Pan, Weiguo
    Pan, Feng
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022