Nanocolumnar Structured Porous Cu-Sn Thin Film as Anode Material for Lithium-Ion Batteries

被引:45
|
作者
Polat, Deniz B. [1 ]
Lu, Jun [2 ]
Abouimrane, Ali
Keles, Ozgul [1 ]
Amine, Khalil [2 ,3 ]
机构
[1] Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia
关键词
anode; porous thin film; inclined nanocolum; oblique angle deposition; lithium-ion battery; electron beam; ELECTROCHEMICAL PERFORMANCE; ALLOY ANODES; ELECTRODES; TIN; BINARY;
D O I
10.1021/am405994b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two nanocolumnar structured porous Cu-Sn films were produced by tuning the duration of the process using an oblique angle deposition (OAD) technique of electron beam coevaporation method. The structural and morphological properties of these porous Cu-Sn films are characterized using thin film X-ray diffraction, scanning electron microcopy (SEM) and atomic force microscopy (AFM). Galvanostatic half-cell electrochemical measurements were conducted in between 5 mV to 2.5 V using a Li counter electrode, demonstrating that the Cu rich Cu6Sn5 thin film having homogenously distributed nanocolumns achieved a good cycleability up to 100 cycles with a high capacity retention, whereas the Cu6Sn5 nanostructured porous thick film with inhomogeneous morphology showed only a very short cycle life (<25 cycles). The difference in the electrochemical performances of the thin and thick nanocolumnar structured porous Cu-Sn films resulting from different evaporation duration was evaluated on the basis of X-ray photoelectron spectroscopy (XPS) analysis on the cycled samples.
引用
收藏
页码:10877 / 10885
页数:9
相关论文
共 50 条
  • [41] Interconnected Sn@SnO2 Nanoparticles as an Anode Material for Lithium-Ion Batteries
    Rodriguez, Jassiel R.
    Hamann, Henry J.
    Mitchell, Garrett M.
    Ortalan, Volkan
    Gribble, Daniel
    Xiong, Beichen
    Pol, Vilas G.
    Ramachandran, P. Veeraraghavan
    ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 11070 - 11076
  • [42] A hierarchically structured Si/Cu/Ag integrated anode for efficient lithium-ion batteries
    Zhou, Ling
    Ma, Wenqing
    Yang, Lishan
    Shao, Li
    Zhou, Jun
    Yang, Chunming
    Liu, Xizheng
    Xi, Xiaoming
    MATERIALS LETTERS, 2019, 244 : 199 - 202
  • [43] Silicon-based porous nanocomposite thin-films as an active anode material for lithium-ion batteries
    Mazaletskiy, L. A.
    Rudy, A. S.
    Metlitskaya, A. V.
    3RD INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SAINT PETERSBURG OPEN 2016), 2016, 741
  • [44] Thin-film lithium and lithium-ion batteries
    Bates, JB
    Dudney, NJ
    Neudecker, B
    Ueda, A
    Evans, CD
    SOLID STATE IONICS, 2000, 135 (1-4) : 33 - 45
  • [45] Profiling lithium distribution in Sn anode for lithium-ion batteries with neutrons
    Jinghui Wang
    Danny X. Liu
    Marcello Canova
    R. Gregory Downing
    Lei R. Cao
    Anne C. Co
    Journal of Radioanalytical and Nuclear Chemistry, 2014, 301 : 277 - 284
  • [46] Profiling lithium distribution in Sn anode for lithium-ion batteries with neutrons
    Wang, Jinghui
    Liu, Danny X.
    Canova, Marcello
    Downing, R. Gregory
    Cao, Lei R.
    Co, Anne C.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2014, 301 (01) : 277 - 284
  • [47] Magnesium Sulphide as Anode Material for Lithium-Ion Batteries
    Helen, M.
    Fichtner, Maximilian
    ELECTROCHIMICA ACTA, 2015, 169 : 180 - 185
  • [48] Synthetic hureaulite as anode material for lithium-ion batteries
    Pan, Meng-Yao
    Lu, Si-Tong
    Li, Yan-Yan
    Fan, Yang
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (05) : 1015 - 1022
  • [49] Synthetic hureaulite as anode material for lithium-ion batteries
    Meng-Yao Pan
    Si-Tong Lu
    Yan-Yan Li
    Yang Fan
    Journal of Applied Electrochemistry, 2023, 53 : 1015 - 1022
  • [50] Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries
    Morimoto, H
    Tobishima, S
    Negishi, H
    JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 469 - 472