Hierarchical Estimation for Adaptive Visual Tracking

被引:0
|
作者
Yun, SeokMin [1 ]
Na, JinHee [1 ]
Kang, Woo-Sung [1 ]
Choi, JinYoung [1 ]
机构
[1] Seoul Natl Univ, ASRI, Dept EECS, Seoul, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel approach which integrates adaptive appearance model and hierarchical estimation mechanism composed of global estimation and local estimation. Hierarchical estimation runs in two phases: In first phase, global estimation coarsely predicts a region in where true state may be present, and then local estimation tries to find out the true state inside the region at second phase. The benefits from Hierarchical estimation are two-fold, on one hand, it reduces the number of particles significantly, which enables real-time tracking, while on the other hand, it improves tracking accuracy even with less number of particles. Experimental results show the effectiveness and robustness of the proposed approach.
引用
收藏
页码:3133 / 3136
页数:4
相关论文
共 50 条
  • [41] Robust Visual Tracking via Hierarchical Convolutional Features
    Ma, Chao
    Huang, Jia-Bin
    Yang, Xiaokang
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (11) : 2709 - 2723
  • [42] Robust visual tracking based on hierarchical appearance model
    Bao, Hua
    Lin, Mingqiang
    Chen, Zonghai
    NEUROCOMPUTING, 2017, 221 : 108 - 122
  • [43] Visual tracking based on hierarchical framework and sparse representation
    Yi, Yang
    Cheng, Yang
    Xu, Chuping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (13) : 16267 - 16289
  • [44] Visual tracking with predictor based on hierarchical neural network
    Xi, Wenming
    Zhu, Jianying
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2002, 36 (07): : 740 - 743
  • [45] Explicitly exploiting hierarchical features in visual object tracking
    Gao, Tianze
    Wang, Nan
    Cai, Jun
    Lin, Weiyang
    Yu, Xinghu
    Qiu, Jianbin
    Gao, Huijun
    NEUROCOMPUTING, 2020, 397 : 203 - 211
  • [46] ADAPTIVE ROBOTIC VISUAL TRACKING - THEORY AND EXPERIMENTS
    PAPANIKOLOPOULOS, NP
    KHOSLA, PK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (03) : 429 - 445
  • [47] An Adaptive Approach for Validation in Visual Object Tracking
    Shinora, Jasper Princy W.
    Agilandeeswari, L.
    Muralibabu, K.
    SECOND INTERNATIONAL SYMPOSIUM ON COMPUTER VISION AND THE INTERNET (VISIONNET'15), 2015, 58 : 478 - 485
  • [48] Adaptive visual tracking for motions on smooth surfaces
    Hsu, L
    Rosa, A
    Zachi, L
    Lizarralde, F
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2430 - 2435
  • [49] Adaptive visual tracking using particle filter
    Gao, Shi-Wei
    Guo, Lei
    Chen, Liang
    Yu, Yong
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2008, : 1117 - 1122
  • [50] Scale adaptive visual tracking with latent SVM
    Zhang, Jin
    Liu, Kai
    Cheng, Fei
    Ding, Wenwen
    ELECTRONICS LETTERS, 2014, 50 (25) : 1933 - 1934