Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm

被引:47
|
作者
Zhou, Xiang [1 ]
Zhao, Hong [1 ]
Jiang, Tao [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
TRANSFORM PROFILOMETRY; WAVELET TRANSFORM; FOURIER-TRANSFORM; PHASE RETRIEVAL; INTERFEROMETRY;
D O I
10.1364/OL.34.002033
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An approach based on a novel technique, called ensemble empirical mode decomposition, is proposed to adaptively reduce noise and remove background intensity from a two-dimensional fringe pattern. It can solve the mode-mixing problem of the original empirical mode decomposition caused by the existence of intermittent noise in fringe signals. Then a strategy is developed to automatically identify and group the resulting intrinsic mode functions for the purpose of eliminating noise and background of the fringe pattern. This approach is applied to process the simulated and practical fringe patterns, compared with Fourier transform and wavelet methods. (C) 2009 Optical Society of America
引用
收藏
页码:2033 / 2035
页数:3
相关论文
共 50 条
  • [31] A Fast Entropy Assisted Complete Ensemble Empirical Mode Decomposition Algorithm
    Liu, Yihai
    Zhang, Xiaomin
    Yu, Yang
    2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 697 - 701
  • [32] Hardware architecture design for complementary ensemble empirical mode decomposition algorithm
    Das, Kaushik
    Pradhan, Sambhu Nath
    INTEGRATION-THE VLSI JOURNAL, 2023, 91 : 153 - 164
  • [33] Analysis of Gas Metal Arc Welding Process Using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
    Kumar, Vikas
    Parida, Manoj K.
    Albert, Shaju K.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2024, : 3279 - 3291
  • [34] Analysis and application of empirical mode decomposition algorithm
    Xie, Qi-Wei
    Xuan, Bo
    Li, Jian-Ping
    Han, Hua
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2009, 29 (11): : 168 - 176
  • [35] Median ensemble empirical mode decomposition
    Lang, Xun
    Rehman, Naveed Ur
    Zhang, Yufeng
    Xie, Lei
    Su, Hongye
    SIGNAL PROCESSING, 2020, 176
  • [36] Fault Diagnosis Using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Power-Based Intrinsic Mode Function Selection Algorithm
    Han, Hyungseob
    Cho, Sangjin
    Kwon, Sundeok
    Cho, Sang-Bock
    ELECTRONICS, 2018, 7 (02)
  • [37] Diagnosis analysis of rectal function through using ensemble empirical mode decomposition-deep belief networks algorithm
    Zan, Peng
    Hong, Rui
    Yang, Banghua
    Zhang, Guofu
    Shao, Yong
    Ding, Qiao
    Zhao, Yutong
    Zhong, Hua
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (06):
  • [38] Detection of ECG Beat using Ensemble Empirical Mode Decomposition
    Rezgui, Dhouha
    Lachiri, Zied
    2015 7th International Conference on Modelling, Identification and Control (ICMIC), 2014, : 309 - 314
  • [39] Kinematic Data Smoothing Using Ensemble Empirical Mode Decomposition
    Chen, Jun
    Zhang, Meng-Shi
    Zhao, Yong-Fang
    Zhan, Hong-Sheng
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2014, 4 (04) : 540 - 546
  • [40] Leakage Detection in Pipelines Using Ensemble Empirical Mode Decomposition
    Ghazali, M. F.
    Beck, S. B. M.
    Staszewski, W. J.
    Shucksmith, J. D.
    Boxall, J. B.
    STRUCTURAL HEALTH MONITORING 2010, 2010, : 203 - 208