Structure theorems of H4-Azumaya algebras

被引:2
|
作者
Armour, Aaron
Chen, Hui-Xiang
Zhang, Yinhuo
机构
[1] Victoria Univ Wellington, Sch Math Stat & Comp Sci, Wellington, New Zealand
[2] Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China
基金
中国国家自然科学基金;
关键词
module algebra; Brauer group; Azumaya algebra;
D O I
10.1016/j.jalgebra.2005.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field and H-4 be Sweedler's 4-dimensional algebra over k. it is well known that H-4 has a family of triangular structures R-t indexed by the ground field k and each triangular structure R-t makes the H-4-module category M-H4 a braided monoidal category, denoted M-H4(Rt). In this paper, we study the Azumaya algebras in the categories (H4)M4(Rt). We obtain the structure theorems for Azumaya algebras in each braided monoidal category M-H4(Rt), t is an element of k. Utilizing the structure theorems we obtain a scalar invariant for each Azumaya algebra in the aforementioned categories. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:360 / 393
页数:34
相关论文
共 50 条