Gyrokinetic Simulations of Turbulent Transport in a Ring Dipole Plasma

被引:26
|
作者
Kobayashi, Sumire [1 ]
Rogers, Barrett N. [1 ]
Dorland, William [2 ]
机构
[1] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
关键词
STABILITY;
D O I
10.1103/PhysRevLett.103.055003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gyrokinetic flux-tube simulations of turbulent transport due to small-scale entropy modes are presented in a ring-dipole magnetic geometry relevant to the Columbia-MIT levitated dipole experiment (LDX) [J. Kesner et al., Plasma Phys. J. 23, 742 (1997)]. Far from the current ring, the dipolar magnetic field leads to strong parallel variations, while close to the ring the system becomes nearly uniform along circular magnetic field lines. The transport in these two limits are found to be quantitatively similar given an appropriate normalization based on the local out-board parameters. The transport increases strongly with the density gradient, and for small eta = L(n)/L(T) << 1, T(i) similar to T(e), and typical LDX parameters, can reach large levels. Consistent with linear theory, temperature gradients are stabilizing, and for T(i) similar to T(e) can completely cut off the transport when eta greater than or similar to 0.6.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Turbulence spreading and transport scaling in global gyrokinetic particle simulations
    Lin, Z
    Hahm, TS
    PHYSICS OF PLASMAS, 2004, 11 (03) : 1099 - 1108
  • [42] Gyrokinetic simulations of neoclassical transport using a minimal collision operator
    Dif-Pradalier, G.
    Grandgirard, V.
    Sarazin, Y.
    Garbet, X.
    Ghendrih, Ph.
    Angelino, P.
    THEORY OF FUSION PLASMAS, 2008, 1069 : 53 - 63
  • [43] Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport
    Esteve, D.
    Sarazin, Y.
    Garbet, X.
    Grandgirard, V.
    Breton, S.
    Donnel, P.
    Asahi, Y.
    Bourdelle, C.
    Dif-Pradalier, G.
    Ehrlacher, C.
    Emeriau, C.
    Ghendrih, Ph.
    Gillot, C.
    Latu, G.
    Passeron, C.
    NUCLEAR FUSION, 2018, 58 (03)
  • [44] Electron heat transport from stochastic fields in gyrokinetic simulations
    Wang, E.
    Nevins, W. M.
    Candy, J.
    Hatch, D.
    Terry, P.
    Guttenfelder, W.
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [45] Modern gyrokinetic formulation of collisional and turbulent transport in toroidally rotating plasmas
    Sugama H.
    Reviews of Modern Plasma Physics, 1 (1)
  • [46] Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport
    林志宏
    SETHIER
    TSHAHM
    WMTANG
    Plasma Science and Technology, 2012, 14 (12) : 1125 - 1126
  • [47] Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport
    Lin Zhihong
    Ethier, S.
    Hahm, T. S.
    Tang, W. M.
    PLASMA SCIENCE & TECHNOLOGY, 2012, 14 (12) : 1125 - 1126
  • [48] Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport
    林志宏
    S.ETHIER
    T.S.HAHM
    W.M.TANG
    Plasma Science and Technology, 2012, (12) : 1125 - 1126
  • [49] Gyrokinetic turbulent heating
    Hinton, F. L.
    Waltz, R. E.
    PHYSICS OF PLASMAS, 2006, 13 (10)
  • [50] Gyrokinetic simulation of turbulent transport for I-mode edge plasmas
    Yang, Hongwei
    Zhou, Tianchun
    Xiao, Yong
    NUCLEAR FUSION, 2021, 61 (05)