Photodissociation rate constants for VUV processes of CF3Cl and CF2Cl2 in the upper atmosphere.: A MQDO study

被引:9
|
作者
Mayor, E [1 ]
Velasco, AM [1 ]
Martín, I [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Quim Fis, E-47005 Valladolid, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2004年 / 108卷 / 26期
关键词
D O I
10.1021/jp049718h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The availability of data concerning the upper atmosphere is essential for an understanding of both the change in solar activity and the different processes that have direct effects on the biosphere, in particular, those with harmful environmental consequences. The main goal of the present work is the theoretical analysis of the photodissociation of two chlorofluorocarbon (CFC) compounds that play an important role in the chemical and energetic balance of the upper atmosphere, CF3Cl and CF2Cl2. Given that the molecular absorption cross section is directly linked to a molecule's photodissociation rate, we have first calculated cross sections and then have used the achieved values to determine the mechanisms of the photofragmentation processes that CF3Cl and CF2Cl2 undergo at specific vacuum-UV (VUV) wavelengths that are present in the ionosphere. We have focused our study on the calculation of the kinetic rate constants for the processes that can give rise to cations upon photoabsorption, because they are difficult to determine experimentally. Through the analysis of the photodissociation rate constants, we have been able to make a comparative study of the dissociative behavior of CF3Cl and CF2Cl2 when these two CFC's undergo absorption within the VUV spectral region. The atmospheric photodissociation rate constants of CF3Cl and CF2Cl2 have been calculated with the Molecular-adapted Quantum Defect Orbital (MQDO) approach as a function of the altitude and at different solar zenith angles. Altitudes from 60 to 150 km, which fall within the D and E layers of the ionosphere, have been considered. No earlier data of this kind have been found in the literature.
引用
收藏
页码:5699 / 5703
页数:5
相关论文
共 50 条
  • [31] Intensity calculations of the VUV and UV photoabsorption and photoionisation of CF3Cl
    Velasco, AM
    Mayor, E
    Martín, I
    CHEMICAL PHYSICS LETTERS, 2003, 377 (1-2) : 189 - 196
  • [32] ENERGETICS OF NEGATIVE-ION FORMATION IN DISSOCIATIVE ELECTRON-ATTACHMENT TO CCL4, CFCL3, CF2CL2, AND CF3CL
    ILLENBERGER, E
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1982, 86 (03): : 252 - 261
  • [33] PHOTODISSOCIATION OF CF2CL2 AT 193 NM INVESTIGATED BY PHOTOFRAGMENT TRANSLATIONAL SPECTROSCOPY
    BAUM, G
    HUBER, JR
    CHEMICAL PHYSICS LETTERS, 1993, 203 (2-3) : 261 - 264
  • [34] PHOTOELECTRON-SPECTROSCOPY OF THE FREON MOLECULES CF3CL, CF2CL2 AND CFCL3 USING SYNCHROTRON RADIATION FROM 41 TO 160 EV
    COOPER, G
    ZHANG, WZ
    BRION, CE
    TAN, KH
    CHEMICAL PHYSICS, 1990, 145 (01) : 117 - 129
  • [35] CONTROL OF PRODUCT CHANNELS BY ADDITION OF VIBRATIONAL OR ELECTRONIC-ENERGY TO THE REACTIONS OF XE(6S) ATOMS WITH CF3CL, CF2CL2 AND CF2HCL MOLECULES
    XU, J
    SLAGLE, AR
    SETSER, DW
    FERRERO, JC
    CHEMICAL PHYSICS LETTERS, 1987, 137 (01) : 63 - 71
  • [36] WETTING TRANSITION OF CF2CL2 ON GRAPHITE
    VOLKMANN, UG
    KNORR, K
    PHYSICAL REVIEW B, 1993, 47 (07): : 4011 - 4013
  • [37] Dissociative electron attachment to CF2Cl2
    Denifl, G
    Muigg, D
    Walker, I
    Cicman, P
    Matejcik, S
    Skalny, JD
    Stamatovic, A
    Märk, TD
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1999, 49 (03) : 383 - 392
  • [38] Thermal conductivity of solid CF2Cl2
    Pursky, O. I.
    Konstantinov, V. A.
    LOW TEMPERATURE PHYSICS, 2007, 33 (6-7) : 584 - 586
  • [39] UV LASER PHOTOCHEMISTRY OF CF2CL2
    TIEE, JJ
    WAMPLER, FB
    RICE, WW
    CHEMICAL PHYSICS LETTERS, 1979, 68 (2-3) : 403 - 406
  • [40] THERMAL-DECOMPOSITION OF CF2CL2
    KUMARAN, SS
    LIM, KP
    MICHAEL, JV
    WAGNER, AF
    JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (21): : 8673 - 8680