Topological superconductivity in monolayer transition metal dichalcogenides

被引:171
|
作者
Hsu, Yi-Ting [1 ]
Vaezi, Abolhassan [2 ]
Fischer, Mark H. [3 ]
Kim, Eun-Ah [1 ]
机构
[1] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
SURFACE; MOS2; POLARIZATION; FERMIONS;
D O I
10.1038/ncomms14985
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as candidates for topological superconductors out of such momentum-space-split spinless fermions. Although electron-doped TMDs have recently been found superconducting, the observed superconductivity is unlikely topological because of the near spin degeneracy. Meanwhile, hole-doped TMDs with momentum-space-split spinless fermions remain unexplored. Employing a renormalization group analysis, we propose that the unusual spin-valley locking in hole-doped TMDs together with repulsive interactions selectively favours two topological superconducting states: interpocket paired state with Chern number 2 and intrapocket paired state with finite pair momentum. A confirmation of our predictions will open up possibilities for manipulating topological superconductors on the device-friendly platform of monolayer TMDs.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Role of Substrate in Transition Metal Dichalcogenides Superconductivity
    Ioan Grosu
    [J]. Journal of Superconductivity and Novel Magnetism, 2020, 33 : 3009 - 3013
  • [22] Unconventional Superconductivity in Bilayer Transition Metal Dichalcogenides
    Liu, Chao-Xing
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (08)
  • [23] Exciton formation in monolayer transition metal dichalcogenides
    Ceballos, Frank
    Cui, Qiannan
    Bellus, Matthew Z.
    Zhao, Hui
    [J]. NANOSCALE, 2016, 8 (22) : 11681 - 11688
  • [24] Trion and Biexciton in Monolayer Transition Metal Dichalcogenides
    Kezerashvili, Roman Ya
    Tsiklauri, Shalva M.
    [J]. FEW-BODY SYSTEMS, 2017, 58 (01)
  • [25] Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides
    Kaneda, Masahiko
    Zhang, Wenjin
    Liu, Zheng
    Gao, Yanlin
    Maruyama, Mina
    Nakanishi, Yusuke
    Nakajo, Hiroshi
    Aoki, Soma
    Honda, Kota
    Ogawa, Tomoya
    Hashimoto, Kazuki
    Endo, Takahiko
    Aso, Kohei
    Chen, Tongmin
    Oshima, Yoshifumi
    Yamada-Takamura, Yukiko
    Takahashi, Yasufumi
    Okada, Susumu
    Kato, Toshiaki
    Miyata, Yasumitsu
    [J]. ACS NANO, 2024, 18 (04) : 2772 - 2781
  • [26] Tailoring photoluminescence of monolayer transition metal dichalcogenides
    Minh Dao Tran
    Kim, Ji-Hee
    Lee, Young Hee
    [J]. CURRENT APPLIED PHYSICS, 2016, 16 (09) : 1159 - 1174
  • [27] Janus Monolayer Transition-Metal Dichalcogenides
    Zhang, Jing
    Jia, Shuai
    Kholmanov, Iskandar
    Dong, Liang
    Er, Dequan
    Chen, Weibing
    Guo, Hua
    Jin, Zehua
    Shenoy, Vivek B.
    Shi, Li
    Lou, Jun
    [J]. ACS NANO, 2017, 11 (08) : 8192 - 8198
  • [28] Trion and Biexciton in Monolayer Transition Metal Dichalcogenides
    Roman Ya Kezerashvili
    Shalva M. Tsiklauri
    [J]. Few-Body Systems, 2017, 58
  • [29] Magnetoexcitons in monolayer transition-metal dichalcogenides
    Spiridonova, Anastasia
    [J]. PHYSICS LETTERS A, 2020, 384 (33)
  • [30] Dark excitations in monolayer transition metal dichalcogenides
    Deilmann, Thorsten
    Thygesen, Kristian Sommer
    [J]. PHYSICAL REVIEW B, 2017, 96 (20)