MODEL-FREE ONLINE REINFORCEMENT LEARNING OF A ROBOTIC MANIPULATOR

被引:3
|
作者
Sweafford, Jerry, Jr. [1 ]
Fahimi, Farbod [1 ]
机构
[1] UAH, Dept Mech & Aerosp Engn MAE, Huntsville, AL 35899 USA
来源
MECHATRONIC SYSTEMS AND CONTROL | 2019年 / 47卷 / 03期
关键词
Reinforcement learning; neural networks; trajectory tracking; model-free; control; robotic manipulator; NONLINEAR-SYSTEMS; CONTROLLER; DESIGN;
D O I
10.2316/J.2019.201-2931
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For robotic systems that do not have joint torques as direct inputs, the computed torque approach, often based on a general dynamic model that is linear with respect to joint velocities and accelerations, is very difficult to implement. We have applied a general model-free online reinforcement learning control methodology for discrete nonaffine nonlinear multiple-input-multiple-output systems to a second-order robotic system. The controller produced effective trajectory tracking in simulations of a two-degree-of-freedom robotic arm, and in actual experiments, with a three degree-of-freedom robotic arm.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 50 条
  • [21] An adaptive clustering method for model-free reinforcement learning
    Matt, A
    Regensburger, G
    [J]. INMIC 2004: 8TH INTERNATIONAL MULTITOPIC CONFERENCE, PROCEEDINGS, 2004, : 362 - 367
  • [22] Model-Free Reinforcement Learning for Mean Field Games
    Mishra, Rajesh
    Vasal, Deepanshu
    Vishwanath, Sriram
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (04): : 2141 - 2151
  • [23] Counterfactual Credit Assignment in Model-Free Reinforcement Learning
    Mesnard, Thomas
    Weber, Theophane
    Viola, Fabio
    Thakoor, Shantanu
    Saade, Alaa
    Harutyunyan, Anna
    Dabney, Will
    Stepleton, Tom
    Heess, Nicolas
    Guez, Arthur
    Moulines, Eric
    Hutter, Marcus
    Buesing, Lars
    Munos, Remi
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [24] Driving in Dense Traffic with Model-Free Reinforcement Learning
    Saxena, Dhruv Mauria
    Bae, Sangjae
    Nakhaei, Alireza
    Fujimura, Kikuo
    Likhachev, Maxim
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 5385 - 5392
  • [25] Model-Free Reinforcement Learning with Continuous Action in Practice
    Degris, Thomas
    Pilarski, Patrick M.
    Sutton, Richard S.
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2177 - 2182
  • [26] Covariance matrix adaptation for model-free reinforcement learning
    Adaptation de la matrice de covariance pour l'apprentissage par renforcement direct
    [J]. 2013, Lavoisier, 14 rue de Provigny, Cachan Cedex, F-94236, France (27)
  • [27] A UNIVERSAL TRAJECTORY TRACKING CONTROLLER FOR MOBILE ROBOTS VIA MODEL-FREE ONLINE REINFORCEMENT LEARNING
    Fahimi, Farbod
    Praneeth, Susheel
    [J]. CONTROL AND INTELLIGENT SYSTEMS, 2015, 43 (01) : 56 - 64
  • [28] Control of Robotic Joint Actuated by Antagonistic Pneumatic Artificial Muscles based on Model-free Reinforcement Learning
    Li, Haoxuan
    Gong, Daoxiong
    Yu, Jianjun
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 887 - 892
  • [29] Model-free learning control of neutralization processes using reinforcement learning
    Syafiie, S.
    Tadeo, F.
    Martinez, E.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (06) : 767 - 782
  • [30] Decentralized reinforcement learning control of a robotic manipulator
    Busoniu, Lucian
    De Schutter, Bart
    Babuska, Robert
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1121 - +