Radio-Frequency Performance of Carbon Nanotube-Based Devices and Circuits Considering Noise and Process Variation

被引:13
|
作者
Martin Landauer, Gerhard [1 ]
Luis Gonzalez, Jose [2 ]
机构
[1] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain
[2] CEA Leti Dacle Lair, F-38054 Grenoble, France
关键词
Carbon nanotube (CNT); carbon-nanotube field-effect transistor (CNFET); noise model; performance benchmarking; process variability; radio frequency (RF); TRANSISTORS INCLUDING NONIDEALITIES; COMPACT SPICE MODEL; PART II; ELECTRONICS; VCO;
D O I
10.1109/TNANO.2014.2298094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper provides a global overview of the radiofrequency (RF) performance potential of carbon-nanotube field-effect transistors (CNFET), which for the first time includes the impact of noise. We develop noise and manufacturing process variability extensions for the Stanford CNFET compact model, implemented in Verilog-A and compatible with conventional circuit simulators. CNFET figures-of-merit (FoM) are determined both on the device and on the circuit level. Compared to silicon technology, CNFET devices show much better performance in terms of most of the RF-CMOS requirements of the International Technology Roadmap for Semiconductors. FoM projections for basic RF building blocks (low-noise amplifier and oscillator) show that good performance can already be obtained with simple circuit topologies. The main advantage of CNFET circuits yet lies in easily reaching operation frequencies of several hundreds of gigahertz, which are hard to be exploited by silicon technologies at similar technology nodes.
引用
收藏
页码:228 / 237
页数:10
相关论文
共 50 条
  • [11] Nonlinear analysis of carbon nanotube-based nanoelectronics devices
    Fakhrabadi, Mir Masoud Seyyed
    Rastgoo, Abbas
    Ahmadian, Mohammad Taghi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (13) : 2426 - 2439
  • [12] Carbon Nanotube-based Programmable Devices for Adaptive Architectures
    Agnus, G.
    Filoramo, A.
    Bourgoin, J-P.
    Derycke, V.
    Zhao, W. S.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1667 - 1670
  • [13] Towards carbon nanotube-based integrated photonics devices
    Noury, A.
    Gaufres, E.
    Le Roux, X.
    Izard, N.
    Vivien, L.
    NANOPHOTONICS AND MICRO/NANO OPTICS, 2012, 8564
  • [14] Experiments and modeling of carbon nanotube-based NEMS devices
    Ke, CH
    Pugno, N
    Peng, B
    Espinosa, HD
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (06) : 1314 - 1333
  • [15] Carbon nanotube-based nano-fluidic devices
    Fakhrabadi, Mir Masoud Seyyed
    Rastgoo, Abbas
    Ahmadian, Mohammad Taghi
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (08)
  • [16] Nonlinear analysis of carbon nanotube-based nanoelectronics devices
    Seyyed Fakhrabadi, Masoud, 1600, SAGE Publications Ltd (228):
  • [17] Radio-frequency characterization of a supercurrent transistor made of a carbon nanotube
    Mergenthaler, M.
    Schupp, F. J.
    Nersisyan, A.
    Ares, N.
    Baumgartner, A.
    Schonenberger, C.
    Briggs, G. A. D.
    Leek, P. J.
    Laird, E. A.
    MATERIALS FOR QUANTUM TECHNOLOGY, 2021, 1 (03):
  • [18] SDR based radio-frequency noise measurements
    Schiavolini, Giacomo
    Orecchini, Giulia
    Palazzi, Valentina
    Mezzanotte, Paolo
    Roselli, Luca
    Simoncini, Guendalina
    Gregorio, Anna
    Alimenti, Federico
    2024 IEEE SPACE HARDWARE RADIO CONFERENCE SHARC, 2024, : 27 - 29
  • [19] Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity
    Ares, N.
    Pei, T.
    Mavalankar, A.
    Mergenthaler, M.
    Warner, J. H.
    Briggs, G. A. D.
    Laird, E. A.
    PHYSICAL REVIEW LETTERS, 2016, 117 (17)
  • [20] Carbon nanotube radio-frequency single-electron transistor
    Roschier, L
    Sillanpää, M
    Wang, TH
    Ahlskog, M
    Iijima, S
    Hakonen, P
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2004, 136 (5-6) : 465 - 480