Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity

被引:70
|
作者
Yu, Huitao [1 ,2 ]
Chen, Can [1 ,2 ]
Sun, Jinxu [1 ,2 ]
Zhang, Heng [1 ,2 ]
Feng, Yiyu [1 ,2 ,3 ]
Qin, Mengmeng [1 ,2 ]
Feng, Wei [1 ,2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Tianjin 300350, Peoples R China
[3] Zhengzhou Univ, Key Lab Mat Proc & Mold, Minist Educ, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon/polymer composites; Self-healing capacity; High thermal conductivity; Molecular simulation; Room temperature; HYDROGELS;
D O I
10.1007/s40820-022-00882-w
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects. However, in view of the complexity of composite structure and composition, its self-heal is facing challenges. In this article, supramolecular effect is proposed to repair the multistage structure, mechanical and thermal properties of composite materials. A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester (PBA)-polydimethylsiloxane (PDMS) were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization. Then, by introducing the copolymer into a folded graphene film (FGf), a highly thermally conductive composite of PBA-PDMS/FGf with self-healing capacity was fabricated. The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA-PDMS could completely self-heal at room temperature in 10 min. Additionally, PBA-PDMS/FGf exhibits a high tensile strength of 2.23 +/- 0.15 MPa at break and high thermal conductivity of 13 +/- 0.2 W m(-1) K-1; of which the self-healing efficiencies were 100% and 98.65% at room temperature for tensile strength and thermal conductivity, respectively. The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules, as well as polymer molecule and graphene. This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Room-temperature self-healing elastomer-graphene composite conducting wires with superior strength for stretchable electronics
    Niu, Pengying
    Bao, Nanbin
    Zhao, Huhu
    Yan, Shuang
    Liu, Beibei
    Wu, Yukai
    Li, Huanjun
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 219
  • [42] Room-Temperature Self-Healing Ablative Composites via Dynamic Covalent Bonds for High-Performance Applications
    Cai, Yuanbo
    Zou, Huawei
    Zhou, Shengtai
    Chen, Yang
    Liang, Mei
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (09) : 3977 - 3987
  • [43] Repeatable room-temperature self-healing memory device based on gelatin films
    Chang, Yu-Chi
    Jian, Jia-Cheng
    Hsu, Ya Lan
    Huang, Wei-Yun
    Chen, Zhao-Cheng
    Liu, Kuan-Miao
    FLEXIBLE AND PRINTED ELECTRONICS, 2020, 5 (04):
  • [44] Fast room-temperature self-healing siloxane elastomer for healable stretchable electronics
    Zhao, Liwei
    Yin, Yue
    Jiang, Bo
    Guo, Zhanhu
    Qu, Chunyan
    Huang, Yudong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 573 (573) : 105 - 114
  • [45] Room Temperature Self-Healing in Soft Pneumatic Robotics Autonomous Self-Healing in a Diels-Alder Polymer Network
    Terryn, Seppe
    Brancart, Joost
    Roels, Ellen
    Van Assche, Guy
    Vanderborght, Bram
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2020, 27 (04) : 44 - 55
  • [46] Curie temperature controlled self-healing magnet-polymer composites
    Ahmed, Anansa S.
    Ramanujan, Raju V.
    JOURNAL OF MATERIALS RESEARCH, 2015, 30 (07) : 946 - 958
  • [47] Room temperature self-healing and recyclable conductive composites for flexible electronic devices based on imine reversible covalent bond
    Min, Jinbiao
    Zhou, Zhaoxi
    Wang, Hainan
    Chen, Qihui
    Hong, Maochun
    Fu, Heqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 894
  • [48] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Ji-Jun Wang
    Qiang Zhang
    Xing-Xiang Ji
    Li-Bin Liu
    Chinese Journal of Polymer Science, 2020, 38 : 1221 - 1229
  • [49] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Ji-Jun Wang
    Qiang Zhang
    Xing-Xiang Ji
    Li-Bin Liu
    Chinese Journal of Polymer Science, 2020, (11) : 1221 - 1229
  • [50] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Wang, Ji-Jun
    Zhang, Qiang
    Ji, Xing-Xiang
    Liu, Li-Bin
    CHINESE JOURNAL OF POLYMER SCIENCE, 2020, 38 (11) : 1221 - 1229