CONVEX ANCIENT SOLUTIONS OF THE MEAN CURVATURE FLOW

被引:0
|
作者
Huisken, Gerhard [1 ]
Sinestrari, Carlo [2 ]
机构
[1] Univ Tubingen, Fachbereich Math, D-72076 Tubingen, Germany
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
RICCI FLOW; HYPERSURFACES; SINGULARITIES; CLASSIFICATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study solutions of the mean curvature flow which are defined for all negative times, usually called ancient solutions. We give various conditions ensuring that a closed convex ancient solution is a shrinking sphere. Examples of such conditions are: a uniform pinching condition on the curvatures, a suitable growth bound on the diameter, or a reverse isoperimetric inequality. We also study the behaviour of uniformly k-convex solutions, and consider generalizations to ancient solutions immersed in a sphere.
引用
收藏
页码:267 / 287
页数:21
相关论文
共 50 条
  • [31] Mean curvature flow with convex Gauss image
    Yuanlong Xin
    Chinese Annals of Mathematics, Series B, 2008, 29 : 121 - 134
  • [32] Crystalline Mean Curvature Flow of Convex Sets
    Giovanni Bellettini
    Vicent Caselles
    Antonin Chambolle
    Matteo Novaga
    Archive for Rational Mechanics and Analysis, 2006, 179 : 109 - 152
  • [33] Subsequent singularities in mean-convex mean curvature flow
    Brian White
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1457 - 1468
  • [35] Stability of mean convex cones under mean curvature flow
    Clutterbuck, J.
    Schnuerer, O. C.
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (3-4) : 535 - 547
  • [36] No mass drop for mean curvature flow of mean convex hypersurfaces
    Metzger, Jan
    Schulze, Felix
    DUKE MATHEMATICAL JOURNAL, 2008, 142 (02) : 283 - 312
  • [37] Nonfattening of Mean Curvature Flow at Singularities of Mean Convex Type
    Hershkovits, Or
    White, Brian
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (03) : 558 - 580
  • [38] Stability of mean convex cones under mean curvature flow
    J. Clutterbuck
    O. C. Schnürer
    Mathematische Zeitschrift, 2011, 267 : 535 - 547
  • [39] Selfsimilar solutions to the mean curvature flow
    Stavrou, N
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 499 : 189 - 198
  • [40] Forced convex mean curvature flow in Euclidean spaces
    Guanghan Li
    Isabel Salavessa
    manuscripta mathematica, 2008, 126 : 333 - 351