A comparison of n-type copolymers based on cyclopentadithiophene and naphthalene diimide/perylene diimides for all-polymer solar cell applications

被引:34
|
作者
Xiao, Bo [1 ]
Ding, Guodong [1 ]
Tan, Zhan'ao [2 ]
Zhou, Erjun [1 ,3 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] North China Elect Power Univ, Sch Renewable Energy, Beijing Key Lab Novel Thin Film Solar Cells, Beijing 102206, Peoples R China
[3] Yangtze River Delta Acad Nanotechnol & Ind Dev Re, Jiaxing 314000, Zhejiang, Peoples R China
关键词
POWER CONVERSION EFFICIENCY; CONJUGATED POLYMERS; PERFORMANCE; PERYLENE; AGGREGATION; MORPHOLOGY; CRYSTALLINITY; PHOTOCURRENT; ACCEPTOR; PAIR;
D O I
10.1039/c5py01054c
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
All-polymer solar cells (PSCs), using naphthalene diimide (NDI)- or perylene diimide (PDI)-based polymers as the electron acceptor, have been intensively investigated in recent years. Nevertheless, the lack of comprehensive comparison studies of NDI- and PDI-based polymers has limited the further development of novel acceptor polymers. Here, we conduct a comparative study of two solution-processable cyclopenta[2,1-b:3,4-b'] dithiophene (CPDT)-based n-type copolymers, PCPDT-NDI and PCPDT-PDI, focusing on their optical, electrochemical and photovoltaic properties. Although PCPDT-NDI has better near-infrared (850-1100 nm) light absorption and crystalline properties, the photovoltaic performance is disappointing mainly because of the poor miscibility with the PTB7 donor polymer and the inferior film quality. On the contrary, PCPDT-PDI exhibits a much better photovoltaic performance with a power conversion efficiency of 2.13% when using 1-chloronaphthalene (CN) as an additive to obtain a good film morphology and to improve the electron mobility. The comprehensive comparison of PDI and NDI- based polymers will help understand the structure-property-performance relationship and will contribute to further development of novel rylene diimide-containing n-type polymers.
引用
收藏
页码:7594 / 7602
页数:9
相关论文
共 50 条
  • [21] Synthesis and Characterization of Arylenevinylenearylene-Naphthalene Diimide Copolymers as Acceptor in All-Polymer Solar Cells
    Xue, Lingwei
    Yang, Yankang
    Bin, Haijun
    Zhang, Zhi-Guo
    Zhang, Jing
    Yang, YunXu
    Li, Yongfang
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2017, 55 (10) : 1757 - 1764
  • [22] All-polymer solar cells based on photostable bis(perylene diimide) acceptor polymers
    Lenaerts, Ruben
    Cardeynaels, Tom
    Sudakov, Ivan
    Kesters, Jurgen
    Verstappen, Pieter
    Manca, Jean
    Champagne, Benoit
    Lutsen, Laurence
    Vanderzande, Dirk
    Vandewal, Koen
    Goovaerts, Etienne
    Maes, Wouter
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 196 : 178 - 184
  • [23] Perylene and naphthalene diimide polymers for all-polymer solar cells: a comparative study of chemical copolymerization and physical blend
    Dai, Shuixing
    Cheng, Pei
    Lin, Yuze
    Wang, Yifan
    Ma, Lanchao
    Ling, Qidan
    Zhan, Xiaowei
    POLYMER CHEMISTRY, 2015, 6 (29) : 5254 - 5263
  • [24] High-performance naphthalene diimide-based n-type copolymers for OFET applications
    Durban, Matthew M.
    Kazarinoff, Peter D.
    Luscombe, Christine K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [25] New n-type polymer semiconductors for all-polymer solar cells
    Hwang, Ye-Jin
    Earmme, Taeshik
    Murari, Nishit M.
    Jenekhe, Samson A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [26] Synthesis and characterization of cyclopentadithiophene-based low bandgap copolymers for all-polymer solar cells
    Deng, Dan
    Gu, Li
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2013, 24 (02) : 507 - 513
  • [27] Synthesis and characterization of cyclopentadithiophene-based low bandgap copolymers for all-polymer solar cells
    Dan Deng
    Li Gu
    Journal of Materials Science: Materials in Electronics, 2013, 24 : 507 - 513
  • [28] Simple perylene diimide based polymer acceptor with tuned aggregation for efficient all-polymer solar cells
    Liu, Zhilin
    Du, Zurong
    Wang, Xunchang
    Zhu, Dangqiang
    Yang, Chunming
    Yang, Wu
    Qu, Xiaofei
    Bao, Xichang
    Yang, Renqiang
    DYES AND PIGMENTS, 2019, 170
  • [29] Fused Perylene Diimide-Based Polymeric Acceptors for Efficient All-Polymer Solar Cells
    Liu, Ming
    Yang, Jing
    Lang, Caili
    Zhang, Yong
    Zhou, Erjun
    Liu, Zhitian
    Guo, Fengyun
    Zhao, Liancheng
    MACROMOLECULES, 2017, 50 (19) : 7559 - 7566
  • [30] Indacenodithienothiophene-naphthalene diimide copolymer as an acceptor for all-polymer solar cells
    Xue, Lingwei
    Yang, Yankang
    Zhang, Zhi-Guo
    Dong, Xinning
    Gao, Liang
    Bin, Haijun
    Zhang, Jing
    Yang, YunXu
    Li, Yongfang
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) : 5810 - 5816