Reciprocal Class of Jump Processes

被引:7
|
作者
Conforti, Giovanni [1 ]
Pra, Paolo Dai [2 ]
Roelly, Sylvie [1 ]
机构
[1] Univ Potsdam, Inst Math, Campus 2 Golm Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[2] Univ Padua, Dipartimento Matemat Pura & Applicata, Via Trieste 63, I-35121 Padua, Italy
关键词
Reciprocal processes; Stochastic bridges; Jump processes; Compound Poisson processes; DIFFUSION; CALCULUS; BRIDGES; FORMULA;
D O I
10.1007/s10959-015-0655-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set . We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.
引用
收藏
页码:551 / 580
页数:30
相关论文
共 50 条
  • [41] Multifractality of jump diffusion processes
    Yang, Xiaochuan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (04): : 2042 - 2074
  • [42] On stochastic completeness of jump processes
    Grigor'yan, Alexander
    Huang, Xueping
    Masamune, Jun
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1211 - 1239
  • [43] The Principal Eigenvalue for Jump Processes
    Chen M.
    [J]. Acta Mathematica Sinica, 2000, 16 (3) : 361 - 368
  • [44] Harnack inequalities for jump processes
    Bass, RF
    Levin, DA
    [J]. POTENTIAL ANALYSIS, 2002, 17 (04) : 375 - 388
  • [45] Harnack Inequalities for Jump Processes
    Richard F. Bass
    David A. Levin
    [J]. Potential Analysis, 2002, 17 : 375 - 388
  • [46] Extremal Processes with One Jump
    A.A. Balkema
    E.I. Pancheva
    [J]. Extremes, 2000, 3 (2) : 173 - 195
  • [47] REPRESENTATION OF MARTINGALES OF JUMP PROCESSES
    DAVIS, MHA
    [J]. SIAM JOURNAL ON CONTROL, 1976, 14 (04): : 623 - 638
  • [48] MARTINGALE THEORY OF JUMP PROCESSES
    VARAIYA, P
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (01) : 34 - 42
  • [49] The principal eigenvalue for jump processes
    Chen, MF
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2000, 16 (03): : 361 - 368
  • [50] On Ito formulas for jump processes
    Gyongy, Istvan
    Wu, Sizhou
    [J]. QUEUEING SYSTEMS, 2021, 98 (3-4) : 247 - 273