A BESSEL DELTA METHOD AND EXPONENTIAL SUMS FOR GL(2)

被引:11
|
作者
Aggarwal, Keshav [1 ]
Holowinsky, Roman [2 ]
Lin, Yongxiao [3 ]
Qi, Zhi [4 ]
机构
[1] Univ Maine, Dept Math & Stat, 5752 Neville Hall, Orono, ME 04469 USA
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] EPFL SB MATHGEOM TAN, Stn 8, CH-1015 Lausanne, Switzerland
[4] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2020年 / 71卷 / 03期
基金
瑞士国家科学基金会;
关键词
CUSP FORM COEFFICIENTS; FOURIER COEFFICIENTS; T-ASPECT; SUBCONVEXITY; BOUNDS;
D O I
10.1093/qmathj/haaa026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a simple Bessel delta-method to the theory of exponential sums for GL(2). Some results of Jutila on exponential sums are generalized in a less technical manner to holomorphic newforms of arbitrary level and nebentypus. In particular, this gives a short proof for the Weyl-type subconvex bound in the t-aspect for the associated L-functions.
引用
收藏
页码:1143 / 1168
页数:26
相关论文
共 50 条
  • [41] Inequalities for exponential sums
    Erdelyi, T.
    SBORNIK MATHEMATICS, 2017, 208 (03) : 433 - 464
  • [42] The stationary-phase method for exponential sums with multiplicative characters
    Fisher, B
    JOURNAL OF NUMBER THEORY, 2002, 96 (01) : 201 - 224
  • [43] VALUES OF EXPONENTIAL SUMS
    AN, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) : 131 - 135
  • [44] Binomial exponential sums
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 21 : 931 - 941
  • [45] MULTIPLE EXPONENTIAL SUMS
    CARLITZ, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A56 - A56
  • [46] On certain exponential sums
    Davenport, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1933, 169 (1/4): : 158 - 176
  • [47] BOUNDS FOR EXPONENTIAL SUMS
    CARLITZ, L
    UCHIYAMA, S
    DUKE MATHEMATICAL JOURNAL, 1957, 24 (01) : 37 - 41
  • [48] Factorization with exponential sums
    Stefanak, M.
    Haase, D.
    Merkel, W.
    Zubairy, M. S.
    Schleich, W. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)
  • [49] NOTE ON EXPONENTIAL SUMS
    CARLITZ, L
    MATHEMATICA SCANDINAVICA, 1978, 42 (01) : 39 - 48
  • [50] On Tractable Exponential Sums
    Cai, Jin-Yi
    Chen, Xi
    Lipton, Richard
    Lu, Pinyan
    FRONTIERS IN ALGORITHMICS, 2010, 6213 : 148 - +