[4] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
来源:
QUARTERLY JOURNAL OF MATHEMATICS
|
2020年
/
71卷
/
03期
基金:
瑞士国家科学基金会;
关键词:
CUSP FORM COEFFICIENTS;
FOURIER COEFFICIENTS;
T-ASPECT;
SUBCONVEXITY;
BOUNDS;
D O I:
10.1093/qmathj/haaa026
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we introduce a simple Bessel delta-method to the theory of exponential sums for GL(2). Some results of Jutila on exponential sums are generalized in a less technical manner to holomorphic newforms of arbitrary level and nebentypus. In particular, this gives a short proof for the Weyl-type subconvex bound in the t-aspect for the associated L-functions.
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Shparlinski, Igor E.
Voloch, Jose Felipe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New ZealandUniv New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia