A BESSEL DELTA METHOD AND EXPONENTIAL SUMS FOR GL(2)

被引:11
|
作者
Aggarwal, Keshav [1 ]
Holowinsky, Roman [2 ]
Lin, Yongxiao [3 ]
Qi, Zhi [4 ]
机构
[1] Univ Maine, Dept Math & Stat, 5752 Neville Hall, Orono, ME 04469 USA
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] EPFL SB MATHGEOM TAN, Stn 8, CH-1015 Lausanne, Switzerland
[4] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2020年 / 71卷 / 03期
基金
瑞士国家科学基金会;
关键词
CUSP FORM COEFFICIENTS; FOURIER COEFFICIENTS; T-ASPECT; SUBCONVEXITY; BOUNDS;
D O I
10.1093/qmathj/haaa026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a simple Bessel delta-method to the theory of exponential sums for GL(2). Some results of Jutila on exponential sums are generalized in a less technical manner to holomorphic newforms of arbitrary level and nebentypus. In particular, this gives a short proof for the Weyl-type subconvex bound in the t-aspect for the associated L-functions.
引用
收藏
页码:1143 / 1168
页数:26
相关论文
共 50 条