Solution for a fractional diffusion-wave equation defined in a bounded domain

被引:389
|
作者
Agrawal, OP [1 ]
机构
[1] So Illinois Univ, Carbondale, IL 62901 USA
关键词
fractional derivative; fractional order diffusion-wave equation; Laplace transform; bounded domain solution for fractional diffusion-wave equation;
D O I
10.1023/A:1016539022492
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A general solution is given for a fractional diffusion-wave equation defined in a bounded space domain. The fractional time derivative is described in the Caputo sense. The finite sine transform technique is used to convert a fractional differential equation from a space domain to a wavenumber domain. Laplace transform is used to reduce the resulting equation to an ordinary algebraic equation. Inverse Laplace and inverse finite sine transforms are used to obtain the desired solutions. The response expressions are written in terms of the Mittag-Leffler functions. For the first and the second derivative terms, these expressions reduce to the ordinary diffusion and wave solutions. Two examples are presented to show the application of the present technique. Results show that for fractional time derivatives of order 1/2 and 3/2, the system exhibits, respectively, slow diffusion and mixed diffusion-wave behaviors.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 50 条
  • [21] Solutions to the fractional diffusion-wave equation in a wedge
    Yuriy Povstenko
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 122 - 135
  • [22] A Study on Fractional Diffusion-Wave Equation with a Reaction
    Abuomar, Mohammed M. A.
    Syam, Muhammed, I
    Azmi, Amirah
    [J]. SYMMETRY-BASEL, 2022, 14 (08):
  • [23] Fourier Problem for Fractional Diffusion-Wave Equation
    Mamchuev, M. O.
    Mamchuev, A. M.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 620 - 628
  • [24] Fractional-order diffusion-wave equation
    ElSayed, AMA
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322
  • [25] Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation
    Luchko, Yuri
    Mainardi, Francesco
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 666 - 675
  • [26] Similarity solution to fractional nonlinear space-time diffusion-wave equation
    Silva Costa, F.
    Marao, J. A. P. F.
    Alves Soares, J. C.
    Capelas de Oliveira, E.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
  • [27] Backward problems in time for fractional diffusion-wave equation
    Floridia, G.
    Yamamoto, M.
    [J]. INVERSE PROBLEMS, 2020, 36 (12)
  • [28] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    [J]. PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [29] A compact difference scheme for the fractional diffusion-wave equation
    Du, R.
    Cao, W. R.
    Sun, Z. Z.
    [J]. APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) : 2998 - 3007
  • [30] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Kochubei, Anatoly N.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 881 - 896