Integrability of one-dimensional Lindbladians from operator-space fragmentation

被引:37
|
作者
Essler, Fabian H. L. [1 ]
Piroli, Lorenzo [2 ,3 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
BETHE-ANSATZ SOLUTION; XXZ; CHAINS; MODELS; STATES;
D O I
10.1103/PhysRevE.102.062210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems that are exactly solvable in the following sense: (i) The space of operators splits into exponentially many (in system size) subspaces that are left invariant under the dissipative evolution; (ii) the time evolution of the density matrix on each invariant subspace is described by an integrable Hamiltonian. The prototypical example is the quantum version of the asymmetric simple exclusion process (ASEP) which we analyze in some detail. We show that in each invariant subspace the dynamics is described in terms of an integrable spin-1/2 XXZ Heisenberg chain with either open or twisted boundary conditions. We further demonstrate that Lindbladians featuring integrable operator-space fragmentation can be found in spin chains with arbitrary local physical dimensions.
引用
收藏
页数:7
相关论文
共 50 条